5,575 research outputs found

    Modeling, Simulation and Emulation of Intelligent Domotic Environments

    Get PDF
    Intelligent Domotic Environments are a promising approach, based on semantic models and commercially off-the-shelf domotic technologies, to realize new intelligent buildings, but such complexity requires innovative design methodologies and tools for ensuring correctness. Suitable simulation and emulation approaches and tools must be adopted to allow designers to experiment with their ideas and to incrementally verify designed policies in a scenario where the environment is partly emulated and partly composed of real devices. This paper describes a framework, which exploits UML2.0 state diagrams for automatic generation of device simulators from ontology-based descriptions of domotic environments. The DogSim simulator may simulate a complete building automation system in software, or may be integrated in the Dog Gateway, allowing partial simulation of virtual devices alongside with real devices. Experiments on a real home show that the approach is feasible and can easily address both simulation and emulation requirement

    Two Conceptions of Logical Form

    Get PDF
    In this paper a brief presentation of Wittgenstein"s picture theory of language is provided, as it is put forth in the Tractatus Logico-Philosophicus. Then some conclusions are drawn with reference to the notion of logical form; in particular, two different conceptions of logical form are expounded, and one of them is shown to be untenable. Two are the features of the picture theory which interest us here. The first is the automatism of sense, i.e. the idea that, once the referents of the names occurring in a proposition are fixed, then the sense of the proposition is automatically determined. That also means that when we know what the names occurring in a proposition refer to, we automatically grasp the sense of the proposition itself: no other piece of information is required

    spChains: A Declarative Framework for Data Stream Processing in Pervasive Applications

    Get PDF
    Pervasive applications rely on increasingly complex streams of sensor data continuously captured from the physical world. Such data is crucial to enable applications to ``understand'' the current context and to infer the right actions to perform, be they fully automatic or involving some user decisions. However, the continuous nature of such streams, the relatively high throughput at which data is generated and the number of sensors usually deployed in the environment, make direct data handling practically unfeasible. Data not only needs to be cleaned, but it must also be filtered and aggregated to relieve higher level algorithms from near real-time handling of such massive data flows. We propose here a stream-processing framework (spChains), based upon state-of-the-art stream processing engines, which enables declarative and modular composition of stream processing chains built atop of a set of extensible stream processing blocks. While stream processing blocks are delivered as a standard, yet extensible, library of application-independent processing elements, chains can be defined by the pervasive application engineering team. We demonstrate the flexibility and effectiveness of the spChains framework on two real-world applications in the energy management and in the industrial plant management domains, by evaluating them on a prototype implementation based on the Esper stream processo

    What Would You Ask to Your Home if It Were Intelligent? Exploring User Expectations about Next-Generation Homes

    Get PDF
    Ambient Intelligence (AmI) research is giving birth to a multitude of futuristic home scenarios and applications; however a clear discrepancy between current installations and research-level designs can be easily noticed. Whether this gap is due to the natural distance between research and engineered applications or to mismatching of needs and solutions remains to be understood. This paper discusses the results of a survey about user expectations with respect to intelligent homes. Starting from a very simple and open question about what users would ask to their intelligent homes, we derived user perceptions about what intelligent homes can do, and we analyzed to what extent current research solutions, as well as commercially available systems, address these emerging needs. Interestingly, most user concerns about smart homes involve comfort and household tasks and most of them can be currently addressed by existing commercial systems, or by suitable combinations of them. A clear trend emerges from the poll findings: the technical gap between user expectations and current solutions is actually narrower and easier to bridge than it may appear, but users perceive this gap as wide and limiting, thus requiring the AmI community to establish a more effective communication with final users, with an increased attention to real-world deploymen

    A multivariate model for financial indices and an algorithm for detection of jumps in the volatility

    Get PDF
    We consider a mean-reverting stochastic volatility model which satisfies some relevant stylized facts of financial markets. We introduce an algorithm for the detection of peaks in the volatility profile, that we apply to the time series of Dow Jones Industrial Average and Financial Times Stock Exchange 100 in the period 1984-2013. Based on empirical results, we propose a bivariate version of the model, for which we find an explicit expression for the decay over time of cross-asset correlations between absolute returns. We compare our theoretical predictions with empirical estimates on the same financial time series, finding an excellent agreement.Comment: 20 pages, 22 figure

    Enabling Machine Understandable Exchange of Energy Consumption Information in Intelligent Domotic Environments

    Get PDF
    In the 21st century, all the major countries around the world are coming together to reduce the impact of energy generation and consumption on the global environment. Energy conservation and its efficient usage has become a top agenda on the desks of many governments. In the last decade, the drive to make homes automated and to deliver a better assisted living picked pace and the research into home automation systems accelerated, usually based on a centralized residential gateway. However most devised solutions fail to provide users with information about power consumption of different house appliances. The ability to collect power consumption information can lead us to have a more energy efficient society. The goal addressed in this paper is to enable residential gateways to provide the energy consumption information, in a machine understandable format, to support third party applications and services. To reach this goal, we propose a Semantic Energy Information Publishing Framework. The proposed framework publishes, for different appliances in the house, their power consumption information and other properties, in a machine understandable format. Appliance properties are exposed according to the existing semantic modeling supported by residential gateways, while instantaneous power consumption is modeled through a new modular Energy Profile ontolog

    Home Energy Consumption Feedback: A User Survey

    Get PDF
    Buildings account for a relevant fraction of the energy consumed by a country, up to 20-40% of the yearly energy consumption. If only electricity is considered, the fraction is even bigger, reaching around 73% of the total electricity consumption, equally divided into residential and commercial dwellings. Building and Home Automation have a potential to profoundly impact current and future buildings' energy efficiency by informing users about their current consumption patterns, by suggesting more efficient behaviors, and by pro-actively changing/modifying user actions for reducing the associated energy wastes. In this paper we investigate the capability of an automated home to automatically, and timely, inform users about energy consumption, by harvesting opinions of residential inhabitants on energy feedback interfaces. We report here the results of an on-line survey, involving nearly a thousand participants, about feedback mechanisms suggested by the research community, with the goal of understanding what feedback is felt by home inhabitants easier to understand, more likely to be used, and more effective in promoting behavior changes. Contextually, we also collect and distill users' attitude towards in-home energy displays and their preferred locations, gathering useful insights on user-driven design of more effective in-home energy display

    Ultralow-energy vibrational quenching in ionic collisions: Isotope effects in Li+ + D2 encounters

    Get PDF
    he collisional, superelastic encounters at ultralow energies of Li(+) with D(2) are computed using the exact coupled-channel dynamics, and using an ab initio potential energy surface discussed in earlier work. The changes in the target rovibrational structure due to the isotopic substitution, and in its rovibrational wave functions, are seen to have a marked effect, under the collision conditions of vanishing relative energy, on the corresponding dynamical attributes, allowing one to make specific predictions on the possible use of isotopic variants in cold trap processes

    dWatch: a Personal Wrist Watch for Smart Environments

    Get PDF
    Intelligent environments, such as smart homes or domotic systems, have the potential to support people in many of their ordinary activities, by allowing complex control strategies for managing various capabilities of a house or a building: lights, doors, temperature, power and energy, music, etc. Such environments, typically, provide these control strategies by means of computers, touch screen panels, mobile phones, tablets, or In-House Displays. An unobtrusive and typically wearable device, like a bracelet or a wrist watch, that lets users perform various operations in their homes and to receive notifications from the environment, could strenghten the interaction with such systems, in particular for those people not accustomed to computer systems (e.g., elderly) or in contexts where they are not in front of a screen. Moreover, such wearable devices reduce the technological gap introduced in the environment by home automation systems, thus permitting a higher level of acceptance in the daily activities and improving the interaction between the environment and its inhabitants. In this paper, we introduce the dWatch, an off-the-shelf personal wearable notification and control device, integrated in an intelligent platform for domotic systems, designed to optimize the way people use the environment, and built as a wrist watch so that it is easily accessible, worn by people on a regular basis and unobtrusiv
    corecore