365 research outputs found

    Cryoenzymology in mixed solvents without cosolvent effects on enzyme specific activity.

    Full text link

    A stopped-flow study of the reaction of cytochrome c peroxidase with hydroperoxides

    Get PDF
    AbstractTransient kinetic measurements show that cytochrome c peroxidase reacts with excess of hydroperoxides to produce compound ES in two phases. The activation energies for the fast and slow phases are calculated to be 6.3 and 20.5 kcal·mol−1, respectively. The fast phase is assigned to the reaction of native active (pulsed) cytochrome c peroxidase with peroxides, whereas the slow phase is due to the presence of an inactive (aged, resting) enzyme. As the active species is exhausted, the equilibrium between the active and inactive enzymes is shifted by a slow conformational change to replenish the active enzyme. Since the rate-limiting step of the reaction of the inactive enzyme with peroxides is the conformation change, the overall reaction rate is independent of the nature and concentration of peroxides

    High-pressure biotechnology in medicine and pharmaceutical science

    Get PDF
    High-pressure (HP) biotechnology is an emerging technique initially applied for food processing and more recently in pharmaceutical and medical sciences. Pressure can stabilize enzymes and modulate both their activity and specificity. HP engineering of proteins may be used for enzyme-catalyzed synthesis of fine chemicals, pharmaceuticals, and production of modified proteins of medical or pharmaceutical interest. HP inactivation of biological agents is expected to be applicable to sterilization of fragile biopharmaceuticals, or medical compounds. The enhanced immunogenicity of some pressure-killed bacteria and viruses could be applied for making new vaccines. Finally, storage at subzero temperatures without freezing is another potential application of HP for cells, animal tissues, blood cells, organs for transplant, and so forth

    Enzyme Assay in Microsomes Below Zero Degrees

    Full text link

    Contribution of the carbohydrate moiety to conformational stability of the carboxypeptidase Y high pressure study.

    Full text link
    peer reviewedThe process of pressure-induced denaturation of carboxypeptidase Y and the role of the carbohydrate moiety in its response to pressure and low temperature were investigated by measuring in situ the catalytic activity and, the intrinsic and 8-anilino-1-naphthalene sulfonic acid binding fluorescences. Pressure-induced denaturation of carboxypeptidase Y is a process involving at least three transitions. Low pressures (below 150 MPa) induced slight conformational changes characterized by a slight decrease in the center of the spectral mass of intrinsic fluorescence, whereas no changes in 8-anilino-1-naphthalene sulfonic acid binding fluorescence were observed and 80% of the catalytic activity remained. Higher pressure (150-500 MPa) induced further conformational changes, characterized by a large decrease in the center of the spectral mass of intrinsic fluorescence, a large increase in the 8-anilino-1-naphthalene sulfonic acid binding fluorescence and the loss of all catalytic activity. Thus, this intermediate exhibited characteristics of molten globule-like state. A further increase, in pressure (above 550 MPa) induced transition from this first molten globule-like state to a second molten globule-like state. This two-stage denaturation process can be explained by assuming the existence of two independent structural domains in the carboxypeptidase molecule. A similar three-transition process was found for unglycosylated carboxypeptidase Y, but, the first two transitions clearly occurred at lower pressures than those for glycosylated carboxypeptidase Y. These findings indicate that the carbohydrate moiety protects carboxypeptidase Y against pressure-induced denaturation. The origin of the protective effects is discussed based on the known crystallographic structure of CPY

    The powerful high pressure tool for protein conformational studies

    Get PDF
    The pressure behavior of proteins may be summarized as a the pressure-induced disordering of their structures. This thermodynamic parameter has effects on proteins that are similar but not identical to those induced by temperature, the other thermodynamic parameter. Of particular importance are the intermolecular interactions that follow partial protein unfolding and that give rise to the formation of fibrils. Because some proteins do not form fibrils under pressure, these observations can be related to the shape of the stability diagram. Weak interactions which are differently affected by hydrostatic pressure or temperature play a determinant role in protein stability. Pressure acts on the 2º, 3º and 4º structures of proteins which are maintained by electrostatic and hydrophobic interactions and by hydrogen bonds. We present some typical examples of how pressure affects the tertiary structure of proteins (the case of prion proteins), induces unfolding (ataxin), is a convenient tool to study enzyme dissociation (enolase), and provides arguments to understand the role of the partial volume of an enzyme (butyrylcholinesterase). This approach may have important implications for the understanding of the basic mechanism of protein diseases and for the development of preventive and therapeutic measures
    • …
    corecore