149 research outputs found

    Ageing and latent CMV infection impact on maturation, differentiation and exhaustion profiles of T-cell receptor gammadelta T-cells

    Get PDF
    Ageing is a broad cellular process, largely affecting the immune system, especially T-lymphocytes. Additionally to immunosenescence alone, cytomegalovirus (CMV) infection is thought to have major impacts on T-cell subset composition and exhaustion. These impacts have been studied extensively in TCRαβ+ T-cells, with reduction in naive, increase in effector (memory) subsets and shifts in CD4/CD8-ratios, in conjunction with morbidity and mortality in elderly. Effects of both ageing and CMV on the TCRγδ+ T-cell compartment remain largely elusive. In the current study we investigated Vγ- and Vδ-usage, maturation, differentiation and exhaustion marker profiles of both CD4 and CD8 double-negative (DN) and CD8+TCRγδ+ T-cells in 157 individuals, age range 20–95. We observed a progressive decrease in absolute numbers of total TCRγδ+ T-cells in blood, affecting the predominant Vγ9/Vδ2 population. Aged TCRγδ+ T-cells appeared to shift from naive to more (late-stage) effector phenotypes, which appeared more prominent in case of persistent CMV infections. In addition, we found effects of both ageing and CMV on the absolute counts of exhausted TCRγδ+ T-cells. Collectively, our data show a clear impact of ageing and CMV persistence on DN and CD8+TCRγδ+ T-cells, similar to what has been reported in CD8+TCRαβ+ T-cells, indicating that they undergo similar ageing processes

    Timing and risk factors for clinical fractures among postmenopausal women: a 5-year prospective study

    Get PDF
    BACKGROUND: Many risk factors for fractures have been documented, including low bone-mineral density (BMD) and a history of fractures. However, little is known about the short-term absolute risk (AR) of fractures and the timing of clinical fractures. Therefore, we assessed the risk and timing of incident clinical fractures, expressed as 5-year AR, in postmenopausal women. METHODS: In total, 10 general practice centres participated in this population-based prospective study. Five years after a baseline assessment, which included clinical risk factor evaluation and BMD measurement, 759 postmenopausal women aged between 50 and 80 years, were re-examined, including undergoing an evaluation of clinical fractures after menopause. Risk factors for incident fractures at baseline that were significant in univariate analyses were included in a multivariate Cox survival regression analysis. The significant determinants were used to construct algorithms. RESULTS: In the total group, 12.5% (95% confidence interval (CI) 10.1–14.9) of the women experienced a new clinical fracture. A previous clinical fracture after menopause and a low BMD (T-score <-1.0) were retained as significant predictors with significant interaction. Women with a recent previous fracture (during the past 5 years) had an AR of 50.1% (95% CI 42.0–58.1) versus 21.2% (95% CI 20.7–21.6) if the previous fracture had occurred earlier. In women without a fracture history, the AR was 13.8% (95% CI 10.9–16.6) if BMD was low and 7.0% (95% CI 5.5–8.5) if BMD was normal. CONCLUSION: In postmenopausal women, clinical fractures cluster in time. One in two women with a recent clinical fracture had a new clinical fracture within 5 years, regardless of BMD. The 5-year AR for a first clinical fracture was much lower and depended on BMD

    Whole Gene Capture Analysis of 15 CRC Susceptibility Genes in Suspected Lynch Syndrome Patients

    Get PDF
    Background and Aims Lynch Syndrome (LS) is caused by pathogenic germline variants in one of the mismatch repair (MMR) genes. However, up to 60% of MMR-deficient colorectal cancer cases are categorized as suspected Lynch Syndrome (sLS) because no pathogenic MMR germline variant can be identified, which leads to difficulties in clinical management. We therefore analyzed the genomic regions of 15 CRC susceptibility genes in leukocyte DNA of 34 unrelated sLS patients and 11 patients with MLH1 hypermethylated tumors with a clear family history. Methods Using targeted next-generation sequencing, we analyzed the entire non-repetitive genomic sequence, including intronic and regulatory sequences, of 15 CRC susceptibility genes. In addition, tumor DNA from 28 sLS patients was analyzed for somatic MMR variants. Results Of 1979 germline variants found in the leukocyte DNA of 34 sLS patients, one was a pathogenic variant (MLH1 c.1667+1delG). Leukocyte DNA of 11 patients with MLH1 hypermethylated tumors was negative for pathogenic germline variants in the tested CRC susceptibility genes and for germline MLH1 hypermethylation. Somatic DNA analysis of 28 sLS tumors identified eight (29%) cases with two pathogenic somatic variants, one with a VUS predicted to pathogenic and LOH, and nine cases (32%) with one pathogenic somatic variant (n = 8) or one VUS predicted to be pathogenic (n = 1). Conclusions This is the first study in sLS patients to include the entire genomic sequence of CRC susceptibility genes. An underlying somatic or germline MMR gene defect was identified in ten of 34 sLS patients (29%). In the remaining sLS patients, the underlying genetic defect explaining the MMRdeficiency in their tumors might be found outside the genomic regions harboring the MMR and other known CRC susceptibility genes

    Whole Gene Capture Analysis of 15 CRC Susceptibility Genes in Suspected Lynch Syndrome Patients

    Get PDF
    This is the first study in sLS patients to include the entire genomic sequence of CRC susceptibility genes. An underlying somatic or germline MMR gene defect was identified in ten of 34 sLS patients (29%). In the remaining sLS patients, the underlying genetic defect explaining the MMR deficiency in their tumors might be found outside the genomic regions harboring the MMR and other known CRC susceptibility genes.Genome Instability and CancerMolecular Technology and Informatics for Personalised Medicine and Healt

    Vitamin D Binding Protein Genotype and Osteoporosis

    Get PDF
    Osteoporosis is a bone disease leading to an increased fracture risk. It is considered a complex multifactorial genetic disorder with interaction of environmental and genetic factors. As a candidate gene for osteoporosis, we studied vitamin D binding protein (DBP, or group-specific component, Gc), which binds to and transports vitamin D to target tissues to maintain calcium homeostasis through the vitamin D endocrine system. DBP can also be converted to DBP-macrophage activating factor (DBP-MAF), which mediates bone resorption by directly activating osteoclasts. We summarized the genetic linkage structure of the DBP gene. We genotyped two single-nucleotide polymorphisms (SNPs, rs7041 = Glu416Asp and rs4588 = Thr420Lys) in 6,181 elderly Caucasians and investigated interactions of the DBP genotype with vitamin D receptor (VDR) genotype and dietary calcium intake in relation to fracture risk. Haplotypes of the DBP SNPs correspond to protein variations referred to as Gc1s (haplotype 1), Gc2 (haplotype 2), and Gc1f (haplotype3). In a subgroup of 1,312 subjects, DBP genotype was found to be associated with increased and decreased serum 25-(OH)D3 for haplotype 1 (P = 3 × 10−4) and haplotype 2 (P = 3 × 10−6), respectively. Similar associations were observed for 1,25-(OH)2D3. The DBP genotype was not significantly associated with fracture risk in the entire study population. Yet, we observed interaction between DBP and VDR haplotypes in determining fracture risk. In the DBP haplotype 1-carrier group, subjects of homozygous VDR block 5-haplotype 1 had 33% increased fracture risk compared to noncarriers (P = 0.005). In a subgroup with dietary calcium intake <1.09 g/day, the hazard ratio (95% confidence interval) for fracture risk of DBP hap1-homozygote versus noncarrier was 1.47 (1.06–2.05). All associations were independent of age and gender. Our study demonstrated that the genetic effect of the DBP gene on fracture risk appears only in combination with other genetic and environmental risk factors for bone metabolism

    Prevalence of vertebral fractures in a disease activity steered cohort of patients with early active rheumatoid arthritis

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To determine the prevalence of vertebral fractures (VFs) after 5 years of disease activity score (DAS)-steered treatment in patients with early rheumatoid arthritis (RA) and to investigate the association of VFs with disease activity, functional ability and bone mineral density (BMD) over time.</p> <p>Methods</p> <p>Five-year radiographs of the spine of 275 patients in the BeSt study, a randomized trial comparing four treatment strategies, were used. Treatment was DAS-steered (DAS ≤ 2.4). A height reduction >20% in one vertebra was defined a vertebral fracture. With linear mixed models, DAS and Health Assessment Questionnaire (HAQ) scores over 5 years were compared for patients with and without VFs. With generalized estimating equations the association between BMD and VFs was determined.</p> <p>Results</p> <p>VFs were observed in 41/275 patients (15%). No difference in prevalence was found when stratified for gender, prednisone use and menopausal status. Disease activity over time was higher in patients with VFs, mean difference 0.20 (95% CI: 0.05-0.36), and also HAQ scores were higher, independent of disease activity, with a mean difference of 0.12 (95% CI: 0.02-0.2). Age was associated with VFs (OR 1.06, 95% CI: 1.02-1.09), mean BMD in spine and hip over time were not (OR 95% CI, 0.99: 0.78-1.25 and 0.94: 0.65-1.36, respectively).</p> <p>Conclusion</p> <p>After 5 years of DAS-steered treatment, 15% of these RA patients had VFs. Higher age was associated with the presence of VFs, mean BMD in hip and spine were not. Patients with VFs have greater functional disability over time and a higher disease activity, suggesting that VFs may be prevented by optimal disease activity suppression.</p

    The Rotterdam Study: 2010 objectives and design update

    Get PDF
    The Rotterdam Study is a prospective cohort study ongoing since 1990 in the city of Rotterdam in The Netherlands. The study targets cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric and respiratory diseases. As of 2008, 14,926 subjects aged 45 years or over comprise the Rotterdam Study cohort. The findings of the Rotterdam Study have been presented in close to a 1,000 research articles and reports (see www.epib.nl/rotterdamstudy). This article gives the rationale of the study and its design. It also presents a summary of the major findings and an update of the objectives and methods

    Biallelic loss of LDB3 leads to a lethal pediatric dilated cardiomyopathy.

    Get PDF
    Autosomal dominant variants in LDB3 (also known as ZASP), encoding the PDZ-LIM domain-binding factor, have been linked to a late onset phenotype of cardiomyopathy and myofibrillar myopathy in humans. However, despite knockout mice displaying a much more severe phenotype with premature death, bi-allelic variants in LDB3 have not yet been reported. Here we identify biallelic loss-of-function variants in five unrelated cardiomyopathy families by next-generation sequencing. In the first family, we identified compound heterozygous LOF variants in LDB3 in a fetus with bilateral talipes and mild left cardiac ventricular enlargement. Ultra-structural examination revealed highly irregular Z-disc formation, and RNA analysis demonstrated little/no expression of LDB3 protein with a functional C-terminal LIM domain in muscle tissue from the affected fetus. In a second family, a homozygous LDB3 nonsense variant was identified in a young girl with severe early-onset dilated cardiomyopathy with left ventricular non-compaction; the same homozygous nonsense variant was identified in a third unrelated female infant with dilated cardiomyopathy. We further identified homozygous LDB3 frameshift variants in two unrelated probands diagnosed with cardiomegaly and severely reduced left ventricular ejection fraction. Our findings demonstrate that recessive LDB3 variants can lead to an early-onset severe human phenotype of cardiomyopathy and myopathy, reminiscent of the knockout mouse phenotype, and supporting a loss of function mechanism
    corecore