797 research outputs found

    Hansenula polymorpha: An attractive model organism for molecular studies of peroxisome biogenesis and function

    Get PDF
    In wild-type Hansenula polymorpha the proliferation of peroxisomes is induced by various unconventional carbon- and nitrogen sources. Highest induction levels, up to 80% of the cytoplasmic volume, are observed in cells grown in methanol-limited chemostat cultures. Based on our accumulated experience, we are now able to precisely adjust both the level of peroxisome induction as well as their protein composition by specific adaptations in growth conditions. During the last few years a series of peroxisome-deficient (per) mutants of H. polymorpha have been isolated and characterized. Phenotypically these mutants are characterized by the fact that they are not able to grow on methanol. Three mutant phenotypes were defined on the basis of morphological criteria, namely: (a) mutants completely lacking peroxisomes (Per-; 13 complementation groups); (b) mutants containing few small peroxisomes which are partly impaired in the peroxisomal import of matrix proteins (Pim-; five complementation groups); and (c) mutants with aberrations in the peroxisomal substructure (Pss-; two complementation groups). In addition, several conditional Per-, Pim- and Pss- mutants have been obtained. In all cases the mutant phenotype was shown to be caused by a recessive mutation in one gene. However, we observed that different mutations in one gene may cause different morphological mutant phenotypes. A detailed genetic analysis revealed that several PER genes, essential for peroxisome biogenesis, are tightly linked and organized in a hierarchical fashion. The use of both constitual and conditional per mutants in current and future studies of the molecular mechanisms controlling peroxisome biogenesis and function is discussed.

    A comparative study of peroxisomal structures in Hansenula polymorpha pex mutants

    Get PDF
    In a recent study, we performed a systematic genome analysis for the conservation of genes involved in peroxisome biogenesis (PEX genes) in various fungi. We have now performed a systematic study of the morphology of peroxisome remnants (‘ghosts’) in Hansenula polymorpha pex mutants (pex1–pex20) and the level of peroxins and matrix proteins in these strains. To this end, all available H. polymorpha pex strains were grown under identical cultivation conditions in glucose-limited chemostat cultures and analyzed in detail. The H. polymorpha pex mutants could be categorized into four distinct groups, namely pex mutants containing: (1) virtually normal peroxisomal structures (pex7, pex17, pex20); (2) small peroxisomal membrane structures with a distinct lumen (pex2, pex4, pex5, pex10, pex12, pex14); (3) multilayered membrane structures lacking apparent matrix protein content (pex1, pex6, pex8, pex13); and (4) no peroxisomal structures (pex3, pex19).

    Moonlighting proteins:An intriguing mode of multitasking

    Get PDF
    AbstractProteins are macromolecules, which perform a large variety of functions. Most of them have only a single function, but an increasing number of proteins are being identified as multifunctional. Moonlighting proteins form a special class of multifunctional proteins. They perform multiple autonomous and often unrelated functions without partitioning these functions into different domains of the protein. Striking examples are enzymes, which in addition to their catalytic function are involved in fully unrelated processes such as autophagy, protein transport or DNA maintenance. In this contribution we present an overview of our current knowledge of moonlighting proteins and discuss the significant implications for biomedical and fundamental research

    Reprogramming Hansenula polymorpha for penicillin production: expression of the Penicillium chrysogenum pcl gene

    Get PDF
    We aim to introduce the penicillin biosynthetic pathway into the methylotrophic yeast Hansenula polymorpha. To allow simultaneous expression of the multiple genes of the penicillin biosynthetic pathway, additional markers were required. To this end, we constructed a novel host–vector system based on methionine auxotrophy and the H. polymorpha MET6 gene, which encodes a putative cystathionine β-lyase. With this new host–vector system, the Penicillium chrysogenum pcl gene, encoding peroxisomal phenylacetyl-CoA ligase (PCL), was expressed in H. polymorpha. PCL has a potential C-terminal peroxisomal targeting signal type 1 (PTS1). Our data demonstrate that a green fluorescent protein–PCL fusion protein has a dual location in the heterologous host in the cytosol and in peroxisomes. Mutation of the PTS1 of PCL (SKI-COOH) to SKL-COOH restored sorting of the fusion protein to peroxisomes only. Additionally, we demonstrate that peroxisomal PCL–SKL produced in H. polymorpha displays normal enzymatic activities.

    PTS1-independent sorting of peroxisomal matrix proteins by Pex5p

    Get PDF
    Most peroxisomal matrix proteins contain a peroxisomal targeting signal 1 (PTS1) for sorting to the correct organelle. This signal is located at the extreme C-terminus and generally consists of only three amino acids. The PTS1 is recognized by the receptor protein Pex5p. Several examples have been reported of peroxisomal matrix proteins that are sorted to peroxisomes via Pex5p, but lack a typical PTS1 tripeptide. In this contribution we present an overview of these so-called non-PTS1 proteins and discuss the current knowledge of the molecular mechanisms involved in their sorting. (C) 2006 Elsevier B.V. All rights reserved

    Novel Peroxisome–Vacuole Contacts in Yeast

    Get PDF
    Peroxisomes are important organelles and present in almost all eukaryotic cells. Close associations between peroxisomes and other cell compartments are known for several decades. The first molecular details of physical contacts between peroxisomes and various other organelles are now beginning to emerge. We recently described a novel contact between peroxisomes and vacuoles in the yeast Hansenula polymorpha, which develops during conditions of strong peroxisome proliferation. At such conditions, Pex3-GFP forms focal patches at the peroxisome–vacuole contacts, while overproduction of Pex3 promotes their formation. These results reveal a novel function for Pex3 in the formation of these contacts, where it might act as a tethering protein. We speculate that the peroxisome–vacuole contact is important for membrane lipid transfer at conditions of strong organellar expansion.</p

    Novel Peroxisome–Vacuole Contacts in Yeast

    Get PDF
    Peroxisomes are important organelles and present in almost all eukaryotic cells. Close associations between peroxisomes and other cell compartments are known for several decades. The first molecular details of physical contacts between peroxisomes and various other organelles are now beginning to emerge. We recently described a novel contact between peroxisomes and vacuoles in the yeast Hansenula polymorpha, which develops during conditions of strong peroxisome proliferation. At such conditions, Pex3-GFP forms focal patches at the peroxisome–vacuole contacts, while overproduction of Pex3 promotes their formation. These results reveal a novel function for Pex3 in the formation of these contacts, where it might act as a tethering protein. We speculate that the peroxisome–vacuole contact is important for membrane lipid transfer at conditions of strong organellar expansion.</p

    Novel Peroxisome–Vacuole Contacts in Yeast

    Get PDF
    Peroxisomes are important organelles and present in almost all eukaryotic cells. Close associations between peroxisomes and other cell compartments are known for several decades. The first molecular details of physical contacts between peroxisomes and various other organelles are now beginning to emerge. We recently described a novel contact between peroxisomes and vacuoles in the yeast Hansenula polymorpha, which develops during conditions of strong peroxisome proliferation. At such conditions, Pex3-GFP forms focal patches at the peroxisome–vacuole contacts, while overproduction of Pex3 promotes their formation. These results reveal a novel function for Pex3 in the formation of these contacts, where it might act as a tethering protein. We speculate that the peroxisome–vacuole contact is important for membrane lipid transfer at conditions of strong organellar expansion.</p
    corecore