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Proteins are macromolecules, which perform a large variety of functions. Most of them have only a single
function, but an increasing number of proteins are being identified as multifunctional. Moonlighting proteins
form a special class of multifunctional proteins. They perform multiple autonomous and often unrelated
functions without partitioning these functions into different domains of the protein. Striking examples are
enzymes, which in addition to their catalytic function are involved in fully unrelated processes such as
autophagy, protein transport or DNA maintenance. In this contribution we present an overview of our
current knowledge of moonlighting proteins and discuss the significant implications for biomedical and
fundamental research.
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1. The definition of moonlighting proteins

The first examples of moonlighting proteins were described in the
late 1980s, when Piatigorsky and Wistow [1] reported that certain
crystallins, structural proteins in the lens of the vertebrate eye, were
well known enzymes. For example, duck ε-crystallin turned out to be
lactate dehydrogenase [2], whereas turtle τ-crystallin is the glycolytic
enzyme α-enolase [3]. A metabolic role of these enzymes in the lens,
where they accumulate to very high concentrations, is not likely [4].
Instead they probably have only a structural function in the lens. In
line with this assumption is the observation that some crystallins are
enzymatically inactive paralogs of these enzymes (see below) [5–7].

To describe the phenomenon of moonlighting, Piatigorsky initially
coined the term gene sharing [8], but nowadays moonlighting is the
generally used term [9], in analogy to moonlighting people who have
multiple jobs. Moonlighting proteins are very special multifunctional
proteins, because they perform multiple autonomous, often unrelat-
ed, functions without partitioning these functions into different
protein domains. Hence, proteins that have multiple functions as a
result of gene fusion are excluded. The same is true for proteins that
are translation products of different splice variants of the same gene.
Another important criterion for a moonlighting protein is the
independency of both functions, meaning that inactivation of one of
the functions (e.g. by mutation) should not affect the second function
and vice versa.

Moonlighting should also not be confused with pleiotropism.
Pleiotropic effects generally are the result of inactivation of a single
function, which is involved in multiple cellular processes, e.g. a
protein that hasmultiple interaction partners in different pathways or
an enzymewhich is important in several metabolic pathways. Instead,
moonlighting proteins perform multiple functions, which differ
mechanistically.

2. Moonlighting proteins: widespread and involved in
many processes

As illustrated in Table 1, examples of moonlighting proteins have
been described in many species including plants [10], animals [11],
yeast [12] and prokaryotes [9,13]. Although most examples of
moonlighting proteins have been identified in yeast [12], this is
probably only due to the fact that these organisms are extensively
studied. The currently known moonlighting functions are extremely
diverse and are involved in a large range of biological functions
(exemplified in Table 1). To illustrate their widespread occurrence
and the diversity in functions, five characteristic examples of
moonlighting proteins are detailed below.

2.1. Escherichia coli thioredoxin

The E. coli anti-oxidant protein thioredoxin is an example of a
prokaryotic moonlighting protein [14]. Upon infection with the
bacteriophage T7 E. coli thioredoxin forms a complex with T7 DNA
polymerase, which results in enhanced T7 DNA replication [15,16], a
crucial step in successful T7 infection. Thioredoxin binds to a loop in
T7 DNA polymerase, thereby creating a sliding clamp that allows the
polymerase to bind more strongly to the DNA [17]. The anti-oxidant
function of thioredoxin is fully autonomous and completely indepen-
dent of its function in T7 DNA replication [18,19], in which the protein
most likely fulfils a structural role.
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Table 1
A selection of established moonlighting proteins in different kingdoms of life.

Protein Organism Functions Ref.

Animals
Aconitase Homo sapiens TCA cycle enzyme [69]

Iron homeostasis
ATF2 Homo sapiens Transcription factor [79]

DNA damage response
Crystallins* Various Lens structural protein [2,3,8]

Various enzymes
Cytochrome c Various Energy metabolism [30]

Apoptosis
DLD Homo sapiens Energy metabolism [50]

Protease
ERK2 Homo sapiens MAP kinase [80]

Transcriptional
repressor

ESCRT-II complex* Drosophila
melanogaster

Endosomal protein
sorting

[81]

bicoid mRNA
localization

STAT3 Mus musculus Transcription factor [34]
Electron transport
chain

Plants
Hexokinase Arabidopsis thaliana Glucose metabolism [82]

Glucose signaling
Presenilin Physcomitrella patens γ-secretase [28]

Cytoskeletal function

Yeast
Aconitase Saccharomyces

cerevisiae
TCA cycle enzyme [35]
mtDNA stability

Aldolase Saccharomyces
cerevisiae

Glycolytic enzyme [36]
V-ATPase assembly

Arg5,6 Saccharomyces
cerevisiae

Arginine biosynthesis [76]
Transcriptional control

Enolase Saccharomyces
cerevisiae

Glycolytic enzyme
Homotypic vacuole fusion [38]
Mitochondrial tRNA
import

[83]

Galactokinase Kluyveromyces lactis Galactose catabolism
enzyme

[54]

Induction galactose
genes

Hal3 Saccharomyces
cerevisiae

Halotolerance
determinant

[84]

Coenzyme A
biosynthesis

HSP60* Saccharomyces
cerevisiae

Mitochondrial
chaperone

[85]

Stabilization active
DNA ori's

Phosphofructokinase Pichia pastoris Glycolytic enzyme [37]
Autophagy peroxisomes

Pyruvate carboxylase Hansenula polymorpha Anaplerotic enzyme [23]
Assembly of alcohol
oxidase

Vhs3 Saccharomyces
cerevisiae

Halotolerance
determinant

[84]

Coenzyme A
biosynthesis

Prokaryotes
Aconitase Mycobacterium

tuberculosis
TCA cycle enzyme [71]
Iron-responsive protein

CYP170A1 Streptomyces
coelicolor

Albaflavenone
synthase

[49]

Terpene synthase
Enolase* Streptococcus

pneumoniae
Glycolytic enzyme [67]
Plasminogen binding

GroEL* Enterobacter
aerogenes

Chaperone [47]
Insect toxin

MurI Mycobacterium
tuberculosis

Glutamate racemase [65]
DNA gyrase inhibitor

(continued on next page)

Table 1 (continued)

Protein Organism Functions Ref.

Prokaryotes
Thioredoxin Escherichia coli Anti-oxidant [17]

T7 DNA polymerase
subunit

Protists
Aldolase* Plasmodium vivax Glycolytic enzyme [73]

Host-cell invasion

Examples of moonlighting proteins are included that illustrate their widespread
occurrence and the large variety in cellular functions. The table excludes examples that
are not true moonlighting proteins according to the criteria indicated in the text (e.g.
fusion proteins, pleiotropy). The table includes all examples referred to in the text of
this review and (in bold) several new examples of moonlighting not mentioned in
earlier reviews [9–12,78]. For some examples (marked with *), there is data that
strongly suggests that these proteins are genuine moonlighting proteins, but there is no
conclusive experimental evidence yet that the multiple functions of these protein are
indeed independent.
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2.2. Pyruvate carboxylase in methylotrophic yeast

Pyruvate carboxylase is a highly conserved enzyme, which
catalyzes the carboxylation of pyruvate into oxaloacetate, thereby
replenishing the tricarboxylic acid cycle [20]. Surprisingly, in
methylotrophic yeast species, such as Hansenula polymorpha and
Pichia pastoris, pyruvate carboxylase is also essential for proper
targeting and assembly of the peroxisomal protein alcohol oxidase
(AO). AO, the first enzyme of methanol metabolism [21], is a homo-
octameric flavoenzyme [22]. In wild type cells the bulk of this enzyme
is present as enzymatically active AO octamers in the peroxisomal
matrix. However, in cells lacking pyruvate carboxylase enzymatically
inactive, FAD-lacking AO monomers accumulate in the cytosol,
indicating that pyruvate carboxylase has a second fully unrelated
function in assembly and import of a peroxisomal matrix protein [23].
How pyruvate carboxylase fulfils this function is yet unknown. As
prescribed for a genuinemoonlighting protein [24], the function in AO
import/assembly is fully independent of the enzyme activity of
pyruvate carboxylase, because amino acid substitutions can be
introduced that fully inactivate the enzyme activity of pyruvate
carboxylase, without affecting its function in AO assembly and import.
Conversely, mutations are known that fully block the function of
pyruvate carboxylase in import and assembly of AO, but have no effect
on the enzyme activity of the protein [24].
2.3. Physcomitrella patens presenilin

Presenilin is the catalytic component of the multiprotein γ-
secretase enzyme complex [25], which cleaves important proteins
such as Notch [26] and amyloid precursor protein (APP), proteins
implicated in Alzheimer's disease [27]. Mammalian presenilin is
suggested to have several moonlighting functions, but it is difficult to
study these functions in mammals. To facilitate the analysis, the moss
P. patens is used as a model organism, because this organism contains
γ-secretase, but not Notch or APP. Upon deletion of the P. patens gene
encoding presenilin phenotypic abnormalities were found, which
strongly suggested that presenilin has a function in the cytoskeletal
network of the moss [28]. This novel function is unrelated to the
enzymatic activity of presenilin, because enzymatically inactive
variants of presenilin could rescue the aberrant morphology.
Interestingly an enzymatically inactive version of human presenilin
could also rescue the phenotype upon introduction in P. patens. This
suggests that presenilin may have an evolutionary conserved
moonlighting function, which is present in plants as well as in
mammals.
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2.4. Cytochrome c

The mitochondrial intermembrane space protein cytochrome c is
part of the electron transport chain. However, upon release into the
cytosol the protein is important in apoptosis. Cytosolic cytochrome c
forms a complex with the apoptotic protease-activating factor 1
(Apaf-1), which is the start of a signaling cascade that results in
apoptotic cell death [29]. The redox and pro-apoptotic functions of
cytochrome c are completely independent [30,31]. It is possible to
create a mutant cytochrome c variant that functions normally in
respiration, but which is unable to bind to Apaf-1. Vice versa
cytochrome c does not need to have a functional redox capacity to
induce an apoptotic response. Hence, cytochrome c also has the
characteristics of a true moonlighting protein.

2.5. STAT3

Recent data indicate that mammalian STAT3 represents a genuine
moonlighting protein [32]. STATs are signal transducers and activators
of transcription [33]. Phosphorylated STATs translocate to the nucleus,
where they bind to the promoter regions of a specific set of genes to
regulate their expression. The hormone leptin activates STAT3, which
is important for the regulation of whole-body energy intake and
metabolism. Wegrzyn et al. [34] showed that a portion of the cellular
STAT3 protein is localized to mitochondria, where it plays a role in
oxidative phosphorylation. In the absence of STAT3 mitochondrial
oxidative phosphorylation is significantly reduced due to a decrease in
the activities of complexes I and II of the electron transport chain.
Because the levels of complex I and II proteins were normal in these
cells, STAT3most likely has no role in the transcriptional regulation of
these proteins. This was further supported by the observation that
transcriptionally inactive STAT3 variants were able to restore
mitochondrial function. In addition, a STAT3 mutant has been
identified that is unable to restore mitochondrial function, but still
possessed transcriptional activity. Hence, inactivation of the function
of STAT3 in transcriptional regulation does not influence its role in
mitochondrial respiration and vice versa.

3. General features of moonlighting proteins

Many of the currently known moonlighting proteins are highly
conserved enzymes, also called ancient enzymes. Especially enzymes
involved in sugar metabolism appear to moonlight [2,3,35–38]. It has
been suggested that as many as 7 out of the 10 proteins in the
glycolytic pathway and 7 out of the 8 enzymes of the tricarboxylic acid
(TCA) cycle have a moonlighting function [11,39].

Why moonlighting functions are so frequently identified in highly
conserved proteins is still very speculative. Possibly this is related to
the fact that highly conserved proteins are present in many different
organisms and hence there is a higher chance that moonlighting
functions are identified for one of these proteins as compared to
proteins that are present in only a few species [9,40]. Moonlighting
functions also seem to occur more often in proteins that are
constitutively expressed at relatively high levels [41]. For these
proteins the development of a novel function is not restricted to
specific conditions.

Although many moonlighting functions reside in highly conserved
proteins, the presence of such a function cannot be predicted based on
homology. For example, the yeast Saccharomyces cerevisiae contains
two pyruvate carboxylases, which each share about eighty percent
sequence identity with pyruvate carboxylase from H. polymorpha.
Despite the high similarity between these proteins, neither one of the
pyruvate carboxylases from S. cerevisiae can perform the moonlight-
ing function of H. polymorpha pyruvate carboxylase in the assembly/
translocation of peroxisomal AO [42]. Pyruvate carboxylase from the
methylotrophic yeast P. pastoris also shares about eighty percent
sequence identity with pyruvate carboxylase from H. polymorpha. In
contrast, it is capable of fulfilling the same moonlighting function as
its counterpart in H. polymorpha [23,43].

4. Evolution of moonlighting proteins

It has been speculated that moonlighting possibly evolves as a way
to expand the functional capabilities of an organism without the
burden of an expanding genome [9]. However, this is not very likely as
in many organisms large parts of the genome do not seem to have a
function and thus there may be little selection pressure to limit
genome size [44].

Gancedo [12] presented a more plausible explanation and referred
to the tinkerer's way of evolution [45], which means that there is no
end goal in evolution and that novel functions only develop by
adapting existing ones. If a particular novel function results in an
advantage for the organism, this function will be selected for during
evolution.

For the development of a moonlighting function, a protein is
proposed to have some innate compatibility for a new function [46].
Additional mutations, which augment the proteins ability to perform
this novel function, are then subsequently selected for.

There are indications that a very limited number of mutations is
sufficient to introduce a new moonlighting function. A good example
is GroEL from Enterobacter aerogenes, a bacterium that lives in the
saliva of antlions. Antlions are larvae of the Myrmeleontidae family
that prey on other insects. They paralyse their prey by injecting a
paralysing toxin produced by salivary bacteria. Yoshida et al. [47]
identified the paralysing toxin in the saliva of Myrmeleon bore larvae
as a homologue of GroEL, a well known molecular chaperone [48]. E.
aerogenes GroEL and E. coli GroEL differ only by 11 amino acids [47].
Yet E. coli GroEL is not toxic, but E. aerogenes GroEL is. Mutational
analysis revealed that only four amino acids were essential for
toxicity. Because none of themwere in proximity to the GroEL folding
cage, these residues are not involved in the chaperone function of
GroEL. Interestingly, a toxic E. coli GroEL variant could be constructed
by introducing the corresponding residues in this protein. Hence, only
four amino acid substitutions were sufficient to introduce a
moonlighting function!

5. Moonlighting and gene duplication

The stress many people experience when combining two jobs may
also be true for moonlighting proteins [49,50]. For instance, the
expression pattern required for one function may not be ideal for the
other function. Also, a particular mutation may increase the efficiency
of one function, but compromise the efficiency of the other one. In
these cases it may be advantageous to distribute the original and
moonlighting function over two genes by means of gene duplication.

An example is argininosuccinate lyase, the fourth enzyme of the
urea cycle. In ducks and ostriches this enzyme is a moonlighting
protein as it also serves as a crystallin in the eye lens [8,51]. In
chickens, however, the two functions of argininosuccinate lyase
protein are performed by two highly homologous proteins. One of
these is the enzymatically inactive form of the enzyme and functions
as structural crystallin in the eye lens. The other is the enzymatically
active enzyme that functions in the urea cycle. Consequently, unlike in
ducks and ostriches, two genes are necessary in chickens to fulfil the
function of the original one [8].

Another example is galactokinase in the yeast species Kluyver-
omyces lactis and S. cerevisiae [52]. In K. lactis, this protein catalyzes
the first step of the galactose utilization pathway and in addition acts
as a transcriptional activator for itself and the other proteins of the
galactose pathway [53,54]. Its function as transcriptional activator is
independent of its enzymatic function and vice versa as mutagenesis
can inactivate either one without affecting the other. In S. cerevisiae
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the two functions of K. lactis galactokinase are however performed by
two different proteins, which are highly homologous [55,56]. S.
cerevisiae galactokinase however has not completely lost its ability to
activate transcription of the galactose pathway proteins [57,58].
6. Medical relevance

The complex phenotypes of several disorders, may be related to
the involvement of moonlighting proteins [11]. Although there is
insufficient evidence to support most of these claims, there are well
studied examples of moonlighting proteins that could play a role in
disease. Two of these are detailed below.
6.1. Dihydrolipoamide dehydrogenase (DLD)

Dihydrolipoamide dehydrogenase (DLD) is a mitochondrial en-
zyme that is a component of at least five different multienzyme
complexes [50]. Due to its participation in these enzyme complexes
DLD is critical for energy metabolism and redox balance. Deficiencies
in DLD activity are associated with severe disorders in infancy, such as
an inability to thrive, hypotonia and metabolic disorders. The severity
of symptoms is however very variable and depends on the mutation
present in the gene.

Under normal conditions DLD is predominantly present as active
homodimers, which are in dynamic equilibrium with the inactive
monomer [59]. However, under certain conditions, such as acidifica-
tion of the mitochondrial matrix, the protein is mainly monomeric,
resulting in a loss in DLD enzyme activity. Babady et al. [50] showed
that mutations that destabilize the homodimer may have an
additional effect, namely an increased ability of DLD to function as a
protease due to enhanced exposure of a catalytic dyad at the dimer
interface. This moonlighting proteolytic activity is independent of its
enzymatic function. A single point mutation in the catalytic dyad,
S456A, results in the complete loss of proteolytic activity without
affecting enzymatic function. This moonlighting function of DLD may
negatively contribute to the metabolic defects seen in some DLD
patients.
6.2. Mycobacterium tuberculosis glutamate racemase (MurI)

The pathogenic bacterium M. tuberculosis is the primary cause of
tuberculosis in humans [60]. This disease is highly infectious and can
be lethal, if left untreated. Ciprofloxacin is a broad-spectrum
antibiotic, which can be used to combat M. tuberculosis [61]. It
stimulates the introduction of double-strand DNA breaks upon
binding to a DNA gyrase. Unfortunately, however, a moonlighting
function of the M. tuberculosis MurI protein counteracts the effects of
ciprofloxacin. MurI is a glutamate racemase, which is an essential M.
tuberculosis enzyme involved in cell wall (peptidoglycan) biosynthe-
sis. It catalyzes the conversion of L-glutamate to D-glutamate [62], a
peptidoglycan building block. In several bacterial species, includingM.
tuberculosis [63–65], MurI however can also function as DNA gyrase
inhibitor, by reducing binding of gyrase to DNA. This second function
is independent of its glutamate racemase enzymatic activity, hence it
represents a moonlighting function [65].

Overproduction of MurI, enzymatically active or not, protects M.
tuberculosis against the action of the ciprofloxacin [65], because MurI
inhibits binding of gyrase to DNA and subsequent introduction of
cytotoxic double-strand DNA breaks.

Moonlighting proteins are also suggested to play a role in host cell
invasion [66,67]. Due to their possible role in disease, enhancing or
blocking moonlighting functions could be a target for future drug
design. Such an approach would however require more knowledge of
moonlighting functions in general and their molecular basis.
7. Moonlighting proteins in molecular life sciences

The existence of moonlighting functions is a major challenge in
genome annotation. Even well studied proteins might harbor
additional functions that have yet to be discovered. The discovery of
many moonlighting functions has so far been entirely serendipitous
[1,23,35,47,50]. A reason for this is that moonlighting functions are
generally difficult to predict, because many functions do not depend
on well known, conserved protein motifs [23,50]. Additionally,
moonlighting functions are often not conserved [42,47,49]. Examples
exist where specific proteins have different moonlighting functions in
different species. For instance, aconitase in S. cerevisiae has a second
function in mitochondrial DNA (mtDNA) maintenance [35], while in
mammals [68–70] and in M. tuberculosis [71] it is involved in iron
homeostasis. Aldolase is essential for the assembly and activity of the
vacuolar H+-ATPase in yeast [36,72], but its actin binding capabilities
are important for host cell invasion in Plasmodium falciparum and
Plasmodium vivax [73–75].

In addition to serendipitous discovery, moonlighting proteins have
also been discovered using yeast two-hybrid assays [72] and
proteomics [76]. A previous review has also suggested mass
spectrometry as a tool for identifying novel moonlighting proteins
[77]. A novel strategy to directly search for moonlighting functions in
enzymes would be to compare the phenotypes of strains in which the
enzyme is inactivated by a point mutation with strains in which the
entire gene is deleted. In case of a gene encoding a moonlighting
protein there should be a discrepancy between both phenotypes.

An important challenge is to understand how a moonlighting
protein can perform such diverse functions. One strategy is to identify
the residues which are essential for the moonlighting function. In
some cases these residues are relatively easy to find. For instance, the
toxic E. aerogenesGroEL differs only 11 amino acidswith the non-toxic
E. coli GroEL [47]. In this case it is very evident that (some of) these 11
residues must be important for the moonlighting activity. Although
more challenging, it would be interesting if the amino acids crucial for
the moonlighting function were also pinpointed in other moonlight-
ing proteins.

8. Perspectives

At present it is still difficult to assess how abundant moonlighting
proteins are. However, the fast growing number of identified moon-
lighting functions suggests that it is a general phenomenon in all
kingdoms of life. Further research into moonlighting is certainly war-
ranted as it will allow us to better understand the essence of protein
function. What allows a protein to perform a particular function?

How do moonlighting functions evolve? Also, moonlighting
functions create a whole new level of complexity in the cell. A
moonlighting protein may link a metabolic pathway to a signaling
pathway in a completely unexpected manner (e.g. very relevant in
systems biology approaches). As a result, awareness of moonlighting
is very important in many disciplines of life sciences.

Moonlighting is a phenomenon that illustrates nature's ingenuity.
It is a source of inspiration that should remind scientists to always
keep the unexpected in mind, even on familiar ground.
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