29 research outputs found
Betweenâhospital variation in rates of complications and decline of patient performance after glioblastoma surgery in the dutch Quality Registry Neuro Surgery
Introduction: For decisions on glioblastoma surgery, the risk of complications and decline in performance is decisive. In this study, we determine the rate of complications and performance decline after resections and biopsies in a national quality registry, their risk factors and the risk-standardized variation between institutions. Methods: Data from all 3288 adults with first-time glioblastoma surgery at 13 hospitals were obtained from a prospective population-based Quality Registry Neuro Surgery in the Netherlands between 2013 and 2017. Patients were stratified by biopsies and resections. Complications were categorized as Clavien-Dindo grades II and higher. Performance decline was considered a deterioration of more than 10 Karnofsky points at 6 weeks. Risk factors were evaluated in multivariable logistic regression analysis. Patient-specific expected and observed complications and performance declines were summarized for institutions and analyzed in funnel plots. Results: For 2271 resections, the overall complication rate was 20 % and 16 % declined in performance. For 1017 biopsies, the overall complication rate was 11 % and 30 % declined in performance. Patient-related characteristics were significant risk factors for complications and performance decline, i.e. higher age, lower baseline Karnofsky, higher ASA classification, and the surgical procedure. Hospital characteristics, i.e. case volume, university affiliation and biopsy percentage, were not. In three institutes the observed complication rate was significantly less than expected. In one institute significantly more performance declines were observed than expected, and in one institute significantly less. Conclusions: Patient characteristics, but not case volume, were risk factors for complications and performance decline after glioblastoma surgery. After risk-standardization, hospitals varied in complications and performance declines
Quantifying eloquent locations for glioblastoma surgery using resection probability maps
OBJECTIVE Decisions in glioblastoma surgery are often guided by presumed eloquence of the tumor location. The authors introduce the "expected residual tumor volume" (eRV) and the "expected resectability index" (eRI) based on previous decisions aggregated in resection probability maps. The diagnostic accuracy of eRV and eRI to predict biopsy decisions, resectability, functional outcome, and survival was determined. METHODS Consecutive patients with first-time glioblastoma surgery in 2012-2013 were included from 12 hospitals. The eRV was calculated from the preoperative MR images of each patient using a resection probability map, and the eRI was derived from the tumor volume. As reference, Sawaya's tumor location eloquence grades (EGs) were classified. Resectability was measured as observed extent of resection (EOR) and residual volume, and functional outcome as change in Karnofsky Performance Scale score. Receiver operating characteristic curves and multivariable logistic regression were applied. RESULTS Of 915 patients, 674 (74%) underwent a resection with a median EOR of 97%, functional improvement in 71 (8%), functional decline in 78 (9%), and median survival of 12.8 months. The eRI and eRV identified biopsies and EORs of at least 80%, 90%, or 98% better than EG. The eRV and eRI predicted observed residual volumes under 10, 5, and 1 ml better than EG. The eRV, eRI, and EG had low diagnostic accuracy for functional outcome changes. Higher eRV and lower eRI were strongly associated with shorter survival, independent of known prognostic factors. CONCLUSIONS The eRV and eRI predict biopsy decisions, resectability, and survival better than eloquence grading and may be useful preoperative indices to support surgical decisions
On the cutting edge of glioblastoma surgery:where neurosurgeons agree and disagree on surgical decisions
OBJECTIVE: The aim of glioblastoma surgery is to maximize the extent of resection while preserving functional integrity. Standards are lacking for surgical decision-making, and previous studies indicate treatment variations. These shortcomings reflect the need to evaluate larger populations from different care teams. In this study, the authors used probability maps to quantify and compare surgical decision-making throughout the brain by 12 neurosurgical teams for patients with glioblastoma. METHODS: The study included all adult patients who underwent first-time glioblastoma surgery in 2012-2013 and were treated by 1 of the 12 participating neurosurgical teams. Voxel-wise probability maps of tumor location, biopsy, and resection were constructed for each team to identify and compare patient treatment variations. Brain regions with different biopsy and resection results between teams were identified and analyzed for patient functional outcome and survival. RESULTS: The study cohort consisted of 1087 patients, of whom 363 underwent a biopsy and 724 a resection. Biopsy and resection decisions were generally comparable between teams, providing benchmarks for probability maps of resections and biopsies for glioblastoma. Differences in biopsy rates were identified for the right superior frontal gyrus and indicated variation in biopsy decisions. Differences in resection rates were identified for the left superior parietal lobule, indicating variations in resection decisions. CONCLUSIONS: Probability maps of glioblastoma surgery enabled capture of clinical practice decisions and indicated that teams generally agreed on which region to biopsy or to resect. However, treatment variations reflecting clinical dilemmas were observed and pinpointed by using the probability maps, which could therefore be useful for quality-of-care discussions between surgical teams for patients with glioblastoma
Preoperative Brain Tumor Imaging:Models and Software for Segmentation and Standardized Reporting
For patients suffering from brain tumor, prognosis estimation and treatment decisions are made by a multidisciplinary team based on a set of preoperative MR scans. Currently, the lack of standardized and automatic methods for tumor detection and generation of clinical reports, incorporating a wide range of tumor characteristics, represents a major hurdle. In this study, we investigate the most occurring brain tumor types: glioblastomas, lower grade gliomas, meningiomas, and metastases, through four cohorts of up to 4,000 patients. Tumor segmentation models were trained using the AGU-Net architecture with different preprocessing steps and protocols. Segmentation performances were assessed in-depth using a wide-range of voxel and patient-wise metrics covering volume, distance, and probabilistic aspects. Finally, two software solutions have been developed, enabling an easy use of the trained models and standardized generation of clinical reports: Raidionics and Raidionics-Slicer. Segmentation performances were quite homogeneous across the four different brain tumor types, with an average true positive Dice ranging between 80 and 90%, patient-wise recall between 88 and 98%, and patient-wise precision around 95%. In conjunction to Dice, the identified most relevant other metrics were the relative absolute volume difference, the variation of information, and the Hausdorff, Mahalanobis, and object average symmetric surface distances. With our Raidionics software, running on a desktop computer with CPU support, tumor segmentation can be performed in 16-54 s depending on the dimensions of the MRI volume. For the generation of a standardized clinical report, including the tumor segmentation and features computation, 5-15 min are necessary. All trained models have been made open-access together with the source code for both software solutions and validation metrics computation. In the future, a method to convert results from a set of metrics into a final single score would be highly desirable for easier ranking across trained models. In addition, an automatic classification of the brain tumor type would be necessary to replace manual user input. Finally, the inclusion of post-operative segmentation in both software solutions will be key for generating complete post-operative standardized clinical reports
Between-hospital variation in mortality and survival after glioblastoma surgery in the Dutch Quality Registry for Neuro Surgery
Purpose: Standards for surgical decisions are unavailable, hence treatment decisions can be personalized, but also introduce variation in treatment and outcome. National registrations seek to monitor healthcare quality. The goal of the study is to measure between-hospital variation in risk-standardized survival outcome after glioblastoma surgery and to explore the association between survival and hospital characteristics in conjunction with patient-related risk factors. Methods: Data of 2,409 adults with first-time glioblastoma surgery at 14 hospitals were obtained from a comprehensive, prospective population-based Quality Registry Neuro Surgery in The Netherlands between 2011 and 2014. We compared the observed survival with patient-specific risk-standardized expected early (30-day) mortality and late (2-year) survival, based on age, performance, and treatment year. We analyzed funnel plots, logistic regression and proportional hazards models. Results: Overall 30-day mortality was 5.2% and overall 2-year survival was 13.5%. Median survival varied between 4.8 and 14.9Â months among hospitals, and biopsy percentages ranged between 16
Preoperative Brain Tumor Imaging: Models and Software for Segmentation and Standardized Reporting
For patients suffering from brain tumor, prognosis estimation and treatment decisions are made by a multidisciplinary team based on a set of preoperative MR scans. Currently, the lack of standardized and automatic methods for tumor detection and generation of clinical reports, incorporating a wide range of tumor characteristics, represents a major hurdle. In this study, we investigate the most occurring brain tumor types: glioblastomas, lower grade gliomas, meningiomas, and metastases, through four cohorts of up to 4,000 patients. Tumor segmentation models were trained using the AGU-Net architecture with different preprocessing steps and protocols. Segmentation performances were assessed in-depth using a wide-range of voxel and patient-wise metrics covering volume, distance, and probabilistic aspects. Finally, two software solutions have been developed, enabling an easy use of the trained models and standardized generation of clinical reports: Raidionics and Raidionics-Slicer. Segmentation performances were quite homogeneous across the four different brain tumor types, with an average true positive Dice ranging between 80 and 90%, patient-wise recall between 88 and 98%, and patient-wise precision around 95%. In conjunction to Dice, the identified most relevant other metrics were the relative absolute volume difference, the variation of information, and the Hausdorff, Mahalanobis, and object average symmetric surface distances. With our Raidionics software, running on a desktop computer with CPU support, tumor segmentation can be performed in 16â54 s depending on the dimensions of the MRI volume. For the generation of a standardized clinical report, including the tumor segmentation and features computation, 5â15 min are necessary. All trained models have been made open-access together with the source code for both software solutions and validation metrics computation. In the future, a method to convert results from a set of metrics into a final single score would be highly desirable for easier ranking across trained models. In addition, an automatic classification of the brain tumor type would be necessary to replace manual user input. Finally, the inclusion of post-operative segmentation in both software solutions will be key for generating complete post-operative standardized clinical reports.publishedVersio
Multi-class glioma segmentation on real-world data with missing MRI sequences: comparison of three deep learning algorithms
This study tests the generalisability of three Brain Tumor Segmentation (BraTS) challenge models using a multi-center dataset of varying image quality and incomplete MRI datasets. In this retrospective study, DeepMedic, no-new-Unet (nn-Unet), and NVIDIA-net (nv-Net) were trained and tested using manual segmentations from preoperative MRI of glioblastoma (GBM) and low-grade gliomas (LGG) from the BraTS 2021 dataset (1251 in total), in addition to 275 GBM and 205 LGG acquired clinically across 12 hospitals worldwide. Data was split into 80% training, 5% validation, and 15% internal test data. An additional external test-set of 158 GBM and 69 LGG was used to assess generalisability to other hospitalsâ data. All modelsâ median Dice similarity coefficient (DSC) for both test sets were within, or higher than, previously reported human inter-rater agreement (range of 0.74â0.85). For both test sets, nn-Unet achieved the highest DSC (internal = 0.86, external = 0.93) and the lowest Hausdorff distances (10.07, 13.87Â mm, respectively) for all tumor classes (p < 0.001). By applying Sparsified training, missing MRI sequences did not statistically affect the performance. nn-Unet achieves accurate segmentations in clinical settings even in the presence of incomplete MRI datasets. This facilitates future clinical adoption of automated glioma segmentation, which could help inform treatment planning and glioma monitoring
Preoperative Brain Tumor Imaging: Models and Software for Segmentation and Standardized Reporting
For patients suffering from brain tumor, prognosis estimation and treatment decisions are made by a multidisciplinary team based on a set of preoperative MR scans. Currently, the lack of standardized and automatic methods for tumor detection and generation of clinical reports, incorporating a wide range of tumor characteristics, represents a major hurdle. In this study, we investigate the most occurring brain tumor types: glioblastomas, lower grade gliomas, meningiomas, and metastases, through four cohorts of up to 4,000 patients. Tumor segmentation models were trained using the AGU-Net architecture with different preprocessing steps and protocols. Segmentation performances were assessed in-depth using a wide-range of voxel and patient-wise metrics covering volume, distance, and probabilistic aspects. Finally, two software solutions have been developed, enabling an easy use of the trained models and standardized generation of clinical reports: Raidionics and Raidionics-Slicer. Segmentation performances were quite homogeneous across the four different brain tumor types, with an average true positive Dice ranging between 80 and 90%, patient-wise recall between 88 and 98%, and patient-wise precision around 95%. In conjunction to Dice, the identified most relevant other metrics were the relative absolute volume difference, the variation of information, and the Hausdorff, Mahalanobis, and object average symmetric surface distances. With our Raidionics software, running on a desktop computer with CPU support, tumor segmentation can be performed in 16â54 s depending on the dimensions of the MRI volume. For the generation of a standardized clinical report, including the tumor segmentation and features computation, 5â15 min are necessary. All trained models have been made open-access together with the source code for both software solutions and validation metrics computation. In the future, a method to convert results from a set of metrics into a final single score would be highly desirable for easier ranking across trained models. In addition, an automatic classification of the brain tumor type would be necessary to replace manual user input. Finally, the inclusion of post-operative segmentation in both software solutions will be key for generating complete post-operative standardized clinical reports