608 research outputs found

    Spin glass like transition in a highly concentrated Fe-C nanoparticle system

    Full text link
    A highly concentrated (17 vol.%) Fe-C nano-particle system, with a narrow size distribution d=5.4±0.4d = 5.4\pm 0.4 nm, has been investigated using magnetic ac susceptibility measurements covering a wide range of frequencies (17 mHz - 170 Hz). A dynamic scaling analysis gives evidence for a phase transition to a low temperature spin-glass-like phase. The critical exponents associated with the transition are zν=10.5±2z\nu = 10.5 \pm 2 and β=1.1±0.2\beta = 1.1 \pm 0.2. The reason why the scaling analysis works for this sample, while it may not work for other samples exhibiting collective behavior as evidenced by aging phenomena, is that the single particle contribution to χ\chi'' is vanishingly small for T>TgT>T_g and hence all slow dynamics is due to collective behavior. This criterion can only be fulfilled for a highly concentrated nano-particle sample with a narrow size distribution.Comment: 2 pages, 3 figures, Proceeding for ICM200

    Construction of Circular Quadrature Amplitude Modulations (CQAM)

    Get PDF

    Sizing nanomaterials in bio-fluids by cFRAP enables protein aggregation measurements and diagnosis of bio-barrier permeability

    Get PDF
    Sizing nanomaterials in complex biological fluids, such as blood, remains a great challenge in spite of its importance for a wide range of biomedical applications. In drug delivery, for instance, it is essential that aggregation of protein-based drugs is avoided as it may alter their efficacy or elicit immune responses. Similarly it is of interest to determine which size of molecules can pass through biological barriers in vivo to diagnose pathologies, such as sepsis. Here, we report on continuous fluorescence recovery after photobleaching (cFRAP) as a analytical method enabling size distribution measurements of nanomaterials (1-100 nm) in undiluted biological fluids. We demonstrate that cFRAP allows to measure protein aggregation in human serum and to determine the permeability of intestinal and vascular barriers in vivo. cFRAP is a new analytical technique that paves the way towards exciting new applications that benefit from nanomaterial sizing in bio-fluids

    A study of cecal ligation and puncture-induced sepsis in tissue-specific tumor necrosis factor receptor 1-deficient mice

    Get PDF
    Sepsis is a complex syndrome resulting from a dysregulated immune response to an infection. Due to the high prevalence, morbidity, and mortality, there is a lot of interest in understanding pathways that play a role in sepsis, with a focus on the immune system. Tumor necrosis factor (TNF) is a pleiotropic pro-inflammatory cytokine and a master regulator of the immune system but clinical trials with TNF blockers in sepsis have failed to demonstrate significant protection. Since TNF stimulates two different receptors, TNF receptor 1 (TNFR1) and TNFR2, pan-TNF inhibition might be suboptimal since both receptors have opposite functions in polymicrobial sepsis. Therefore, we hypothesized that TNF has a dual role in sepsis, namely a mediating and a protective role, and that protection might be obtained by TNFR1-specific inhibition. We here confirmed that TNFR1(-/-) mice are protected in the sterile endotoxemia model, whereas TNFR1 deficiency did not protect in the cecal ligation and puncture (CLP)-induced polymicrobial sepsis model. Since whole body TNFR1 blockage might be deleterious because of the antibacterial function of TNF/TNFR1 signaling, we focused on the potential devastating role of TNF/TNFR1 signaling in specific cell types. We were interested in the gut epithelium, the endothelium, and hepatocytes using conditional TNFR1(-/-) mice, as these cell types have been shown to play a role in sepsis. However, none of these conditional knockout mice showed improved survival in the CLP model. We conclude that cell-specific targeting of TNFR1 to these cell types has no therapeutic future in septic peritonitis

    Matrix metalloproteinase 13 modulates intestinal epithelial barrier integrity in inflammatory diseases by activating TNF

    Get PDF
    Several pathological processes, such as sepsis and inflammatory bowel disease (IBD), are associated with impairment of intestinal epithelial barrier. Here, we investigated the role of matrix metalloproteinase MMP13 in these diseases. We observed that MMP13(-/-) mice display a strong protection in LPS- and caecal ligation and puncture-induced sepsis. We could attribute this protection to reduced LPS-induced goblet cell depletion, endoplasmic reticulum stress, permeability and tight junction destabilization in the gut of MMP13(-/-) mice compared to MMP13(+/+) mice. Both in vitro and in vivo, we found that MMP13 is able to cleave pro-TNF into bioactive TNF. By LC-MS/MS, we identified three MMP13 cleavage sites, which proves that MMP13 is an alternative TNF sheddase next to the TNF converting enzyme TACE. Similarly, we found that the same mechanism was responsible for the observed protection of the MMP13(-/-) mice in a mouse model of DSS-induced colitis. We identified MMP13 as an important mediator in sepsis and IBD via the shedding of TNF. Hence, we propose MMP13 as a novel drug target for diseases in which damage to the gut is essential
    corecore