114 research outputs found

    A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning

    Get PDF
    The Gumbel-max trick is a method to draw a sample from a categorical distribution, given by its unnormalized (log-)probabilities. Over the past years, the machine learning community has proposed several extensions of this trick to facilitate, e.g., drawing multiple samples, sampling from structured domains, or gradient estimation for error backpropagation in neural network optimization. The goal of this survey article is to present background about the Gumbel-max trick, and to provide a structured overview of its extensions to ease algorithm selection. Moreover, it presents a comprehensive outline of (machine learning) literature in which Gumbel-based algorithms have been leveraged, reviews commonly-made design choices, and sketches a future perspective.</p

    A deep-learning approach to assess respiratory effort with a chest-worn accelerometer during sleep

    Get PDF
    Objective: The objective is to develop a new deep learning method for the estimation of respiratory effort from a chest-worn accelerometer during sleep. We evaluate performance, compare it against a state-of-the art method, and assess whether it can differentiate between sleep stages. Methods: In 146 participants undergoing overnight polysomnography data were collected from an accelerometer worn on the chest. The study data were partitioned into train, validation, and holdout (test) sets. We used the train and validation sets to generate and train a convolutional neural network and performed model selection respectively, while we used the holdout set (72 participants) to evaluate performance. Results: A convolutional neural network with 9 layers and 207,855 parameters was automatically generated and trained. The neural network significantly outperformed the best performing conventional method, based on Principal Component Analysis; it reduced the Mean Squared Error from 0.26 to 0.11 and it also performed better in the detection of breaths (Sensitivity 98.4 %, PPV 98.2 %). In addition, the neural network exposed significant differences in characteristics of respiratory effort between sleep stages (p &lt; 0.001). Conclusion: The deep learning method predicts respiratory effort with low error and is sensitive and precise in the detection of breaths. In addition, it reproduces differences between sleep stages, which may enable automatic sleep staging, using just a chest-worn accelerometer.</p

    Deep Task-Based Analog-to-Digital Conversion

    Get PDF
    Analog-to-digital converters (ADCs) allow physical signals to be processed using digital hardware. Their conversion consists of two stages: Sampling, which maps a continuous-time signal into discrete-time, and quantization, i.e., representing the continuous-amplitude quantities using a finite number of bits. ADCs typically implement generic uniform conversion mappings that are ignorant of the task for which the signal is acquired, and can be costly when operating in high rates and fine resolutions. In this work we design task-oriented ADCs which learn from data how to map an analog signal into a digital representation such that the system task can be efficiently carried out. We propose a model for sampling and quantization that facilitates the learning of non-uniform mappings from data. Based on this learnable ADC mapping, we present a mechanism for optimizing a hybrid acquisition system comprised of analog combining, tunable ADCs with fixed rates, and digital processing, by jointly learning its components end-to-end. Then, we show how one can exploit the representation of hybrid acquisition systems as deep network to optimize the sampling rate and quantization rate given the task by utilizing Bayesian meta-learning techniques. We evaluate the proposed deep task-based ADC in two case studies: the first considers symbol detection in multi-antenna digital receivers, where multiple analog signals are simultaneously acquired in order to recover a set of discrete information symbols. The second application is the beamforming of analog channel data acquired in ultrasound imaging. Our numerical results demonstrate that the proposed approach achieves performance which is comparable to operating with high sampling rates and fine resolution quantization, while operating with reduced overall bit rate

    Deep Task-Based Analog-To-Digital Conversion

    Get PDF
    Analog-To-digital converters (ADCs) allow physical signals to be processed using digital hardware. Their conversion consists of two stages: Sampling, which maps a continuous-Time signal into discrete-Time, and quantization, i.e., representing the continuous-Amplitude quantities using a finite number of bits. ADCs typically implement generic uniform conversion mappings that are ignorant of the task for which the signal is acquired, and can be costly when operating in high rates and fine resolutions. In this work we design task-oriented ADCs which learn from data how to map an analog signal into a digital representation such that the system task can be efficiently carried out. We propose a model for sampling and quantization that facilitates the learning of non-uniform mappings from data. Based on this learnable ADC mapping, we present a mechanism for optimizing a hybrid acquisition system comprised of analog combining, tunable ADCs with fixed rates, and digital processing, by jointly learning its components end-To-end. Then, we show how one can exploit the representation of hybrid acquisition systems as deep networks to optimize the sampling and quantization rates given the task by utilizing Bayesian meta-learning techniques. We evaluate the proposed deep task-based ADC in two case studies: The first considers synthetic multi-variate symbol detection, where multiple analog signals are simultaneously acquired in order to recover a set of discrete symbols. The second application is beamforming of analog channel data acquired in ultrasound imaging. Our numerical results demonstrate that the proposed approach achieves performance which is comparable to operating with high sampling rates and fine resolution quantization, while operating with reduced overall bit rate. For instance, we demonstrate that deep task-based ADCs enable accurate reconstruction of ultrasound images while using 12.5% of the overall number of bits used by conventional ADCs.</p

    Deep Proximal Learning for High-Resolution Plane Wave Compounding

    Get PDF
    Plane Wave imaging enables many applications that require high frame rates, including localisation microscopy, shear wave elastography, and ultra-sensitive Doppler. To alleviate the degradation of image quality with respect to conventional focused acquisition, typically, multiple acquisitions from distinctly steered plane waves are coherently (i.e. after time-of-flight correction) compounded into a single image. This poses a trade-off between image quality and achievable frame-rate. To that end, we propose a new deep learning approach, derived by formulating plane wave compounding as a linear inverse problem, that attains high resolution, high-contrast images from just 3 plane wave transmissions. Our solution unfolds the iterations of a proximal gradient descent algorithm as a deep network, thereby directly exploiting the physics-based generative acquisition model into the neural network design. We train our network in a greedy manner, i.e. layer-by-layer, using a combination of pixel, temporal, and distribution (adversarial) losses to achieve both perceptual fidelity and data consistency. Through the strong model-based inductive bias, the proposed architecture outperforms several standard benchmark architectures in terms of image quality, with a low computational and memory footprint

    SubspaceNet:Deep Learning-Aided Subspace Methods for DoA Estimation

    Get PDF
    Direction of arrival (DoA) estimation is a fundamental task in array processing. A popular family of DoA estimation algorithms are subspace methods, which operate by dividing the measurements into distinct signal and noise subspaces. Subspace methods, such as Multiple Signal Classification (MUSIC) and Root-MUSIC, rely on several restrictive assumptions, including narrowband non-coherent sources and fully calibrated arrays, and their performance is considerably degraded when these do not hold. In this work we propose SubspaceNet; a data-driven DoA estimator which learns how to divide the observations into distinguishable subspaces. This is achieved by utilizing a dedicated deep neural network to learn the empirical autocorrelation of the input, by training it as part of the Root-MUSIC method, leveraging the inherent differentiability of this specific DoA estimator, while removing the need to provide a ground-truth decomposable autocorrelation matrix. Once trained, the resulting SubspaceNet serves as a universal surrogate covariance estimator that can be applied in combination with any subspace-based DoA estimation method, allowing its successful application in challenging setups. SubspaceNet is shown to enable various DoA estimation algorithms to cope with coherent sources, wideband signals, low SNR, array mismatches, and limited snapshots, while preserving the interpretability and the suitability of classic subspace methods

    SubspaceNet:Deep Learning-Aided Subspace Methods for DoA Estimation

    Get PDF
    Direction of arrival (DoA) estimation is a fundamental task in array processing. A popular family of DoA estimation algorithms are subspace methods, which operate by dividing the measurements into distinct signal and noise subspaces. Subspace methods, such as Multiple Signal Classification (MUSIC) and Root-MUSIC, rely on several restrictive assumptions, including narrowband non-coherent sources and fully calibrated arrays, and their performance is considerably degraded when these do not hold. In this work we propose SubspaceNet; a data-driven DoA estimator which learns how to divide the observations into distinguishable subspaces. This is achieved by utilizing a dedicated deep neural network to learn the empirical autocorrelation of the input, by training it as part of the Root-MUSIC method, leveraging the inherent differentiability of this specific DoA estimator, while removing the need to provide a ground-truth decomposable autocorrelation matrix. Once trained, the resulting SubspaceNet serves as a universal surrogate covariance estimator that can be applied in combination with any subspace-based DoA estimation method, allowing its successful application in challenging setups. SubspaceNet is shown to enable various DoA estimation algorithms to cope with coherent sources, wideband signals, low SNR, array mismatches, and limited snapshots, while preserving the interpretability and the suitability of classic subspace methods
    corecore