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A Review of the Gumbel-max Trick and
its Extensions for Discrete Stochasticity in

Machine Learning
Iris A. M. Huijben , Student Member, IEEE, Wouter Kool ,

Max B. Paulus, and Ruud J. G. van Sloun ,Member, IEEE

Abstract—The Gumbel-max trick is a method to draw a sample from a categorical distribution, given by its unnormalized (log-)

probabilities. Over the past years, the machine learning community has proposed several extensions of this trick to facilitate, e.g.,

drawing multiple samples, sampling from structured domains, or gradient estimation for error backpropagation in neural network

optimization. The goal of this survey article is to present background about the Gumbel-max trick, and to provide a structured overview

of its extensions to ease algorithm selection. Moreover, it presents a comprehensive outline of (machine learning) literature in which

Gumbel-based algorithms have been leveraged, reviews commonly-made design choices, and sketches a future perspective.

Index Terms—Gumbel-max trick, sampling, gradient estimation, gumbel-softmax, categorical distribution, structured models

Ç

1 INTRODUCTION

THE world around us is discrete in many aspects. Think
about decision making, e.g., in traffic (Should I decelerate,

accelerate or maintain a constant speed?), for product selection
(Given that I liked the trousers from shop X last time, which new
trousers shall I buy?), or in a clinical setting (Should I adminis-
ter medication A or B to the patient?). Other discrete examples
yield occurrence of events (At which day did I see you for the
last time?), social networks (Do two persons know each other?)
or data compression (How many bits do we need to store this
information?). Modelling these concepts evidently pleads for
discrete models, on which we focus in this work.

The immensely grown popularity of machine learning,
and in particular deep learning, has given rise to high capacity
models that have consistently been outperforming more clas-
sical models in various domains. Whereas the first neural net-
works typically comprised a stack of few fully-connected

layers, activated with non-linear functions, current deep

learning models often exhibit a (very) deepmodular architec-

ture. Specifically generative models (e.g., the variational auto-

encoder (VAE) [1] and auto-regressive pixelCNN [2]), and

Bayesian models combine such deep architectures with a

form of stochasticity. Trainable parameters of these models

are generally learned in a data-driven fashion, i.e., they are

optimized over a set of training examples by back-propagat-

ing the error for a downstream task. The probability distribu-

tions are then treated as stochastic nodes in a computation

graph, from which a sample is drawn to compute the output,

and subsequently the error.
Sampling from resulting discrete distributions may raise

challenges when the probability mass function is unnormal-
ized, or in case of an (exponentially) large sampling domain.
The latter is often encountered in sequence models, where
one ‘sample’ entails a full sequence, and the sampling
domain grows combinatorially for each additional sequence
element. Moreover, incorporating (discrete) stochasticity in
deep learning models poses a second challenge. Gradient
computation, and therefore error backpropagation, through
a stochastic node is hampered, which is required for updat-
ing the distribution’s parameters and all model parameters
that precede this node in the network. These two challenges,
i.e., sampling and gradient estimation of discrete stochasticity
in deep learning models, will be the focus of this review.

Several algorithms today exist to sample from structured
models with exponentially large sampling domains (e.g.,
ancestral sampling), or to sample from a set of unnormalized
probabilities (e.g., Markov Chain Monte Carlo (MCMC)
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methods [3], or the Gumbel-max trick [4]). The Gumbel-max
trick recently found renewed attention for use in deep learn-
ing models, thanks to the proposed Gumbel-Softmax (GS)
gradient estimator that is based on a relaxation of this trick
[5], [6]. The GS estimator (and variants thereof) have become
popular (biased) alternatives for the high-variance REIN-
FORCE estimator [7], thanks to their good empirical perfor-
mance and straightforward implementation.

This article provides both an intuitive and mathematical
understanding of the Gumbel-max trick, reviews extensions
of this trick, provides handles for algorithm selection and
corresponding design choices, and sketches a future per-
spective. The content can be summarized as follows:

� Background on categorical random variables, the
Gumbel distribution and inverse transform sampling
is covered in Section 2.

� Applications of Gumbel-based algorithms inmachine
learning are discussed in Section 3.

� Sections 4 and 5 present technical details about Gum-
bel-based sampling algorithms and gradient estima-
tors, respectively.

� Practical considerations and commonly-made design
choices are presented in Section 6.

� Section 7 summarizes this review and sketches a
future perspective.

2 PRELIMINARIES

2.1 Categorical Distribution

A categorical distribution is a probability distribution that
assigns a probability toN distinct classes. We consider three
different parameterizations of the same distribution: normal-
ized probabilities pp, unnormalized probabilities uu, or unnormal-
ized log-probabilities (or logits) log uu ¼ aa=T , where T 2 R> 0 is
a temperature parameter. We denote the ith unnormalized
probability - which depends on T - with ui;T . The probabili-
ties pi;T for each class i 2 D ¼ f1; . . . ; Ng are then given by:

pi;T ¼ ui;TP
j2D uj;T

¼ expðai=T ÞP
j2D expðaj=T Þ ¼

expðai=T Þ
ZDðuuÞ ; (1)

where ZDðuuÞ ¼
P

j2D uj;T ¼ P
j2D expðaj=T Þ 2 R> 0 is the

partition function that normalizes the distribution. To pre-
vent clutter, both the parameter and subscript of Z, and
temperature subscript T are, in the rest of this paper, omit-
ted when context allows it.

The temperature T controls the distribution’s entropy, such
that the distribution can vary between a degenerate/determin-
istic ‘one-hot’ distribution for T ! 0þ (i.e., all mass is central-
ized in one class), and a Uniform distribution (all probabilities
are equal) for T ! 1. In many cases, T simply equals one,
making aa the unnormalized log-probabilities. Eq. (1) is known
as a softmax function with temperature parameter T . Parame-
terized as Catðaa;T Þ, the categorical distribution is often
referred to as theGibbs or Boltzmann distribution.

We will use the terms unstructured and structured models
in this work. The former is used for what is normally referred
to as a categorical distribution: a distribution assigning a
probability to a single event/class (e.g., the probability that
horse X wins a horse race). The number of distribution
parameters thus equals the size of the sampling domain. A

structured model, on the other hand, places a probability on
structures, i.e., different combinations of events/classes,
rather than on single events (e.g., the probability that horses
X, Y , and Z cover the top-3). A sequence model is another
common example of such a structured model, in which the
sampling distribution of each element may be conditional
upon the previously sampled element.

A random variable following a categorical distribution is
denoted with I in this work, and a realization (i.e., a sample
from the categorical distribution) is denoted with I ¼ v,
providing the index of the sampled class. In certain contexts,
it is useful to define this sample as a one-hot embedding; a
unit vector of length N , with a one at index v and zeros oth-
erwise, which we denote with 1v. Several algorithms exist
to sample from a categorical distribution. Inverse transform
sampling is the most basic approach (see Section 2.3). The
Gumbel-max trick (see Section 4.1.1), and variants thereof
(see Section 4.3) are commonly-used alternatives in machine
learning applications.

2.2 Gumbel Distribution

The Gumbel distribution [8] is an instance (type I) of the gen-
eralized extreme value distribution1 [9],whichmodels optima
and rare events. A Gumbel random variable - which is often
referred to in this work as ‘a Gumbel’ - is parameterized by
location and scale parameters m 2 R and b 2 R�0, respec-
tively. The corresponding probability (PDF) and cumulative
density (CDF) functions are respectively given by

fðxÞ ¼ 1

b
e
�x�m

b e�e
�x�m

b
; and (2)

F ðxÞ ¼ e�e
�x�m

b
: (3)

We denote a Gumbel distribution (as defined in Eq. (2))
with Gumbelðm;bÞ (or sometimes Gðm;bÞ in short), and a
random variable following this distribution with Gm;b. To
prevent clutter, the scale, or both parameters are frequently
omitted when standard settings are assumed (i.e., Gm :¼
Gm;1 and G :¼ G0;1). We often consider a set of identically
and independently distributed (i.i.d.) Gumbel variables,
where we use GðiÞ to denote an ith standard Gumbel. Note
that, m and b are not the mean and variance of a Gumbel,
which are given by:

E½Gm;b� ¼ mþ gb; and (4)

E½ðGm;b � E½Gm;b�Þ2� ¼ p2

6
b2; (5)

where g � 0:577 is the Euler constant and p � 3:14 is the
constant pi (not to be confused with the normalized proba-
bility of the categorical distribution), respectively.

The inverse cumulative density function (ICDF; also
called quantile function) is given by

F�1ðuÞ ¼ �blog ð�loguÞ þ m: (6)

1. Also the Fr�echet (type II) and Weibull (type III) distribution gen-
eralize to this generalized extreme value distribution.
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From Eq. (6) it can be seen that the Gumbel distribution is
closed under scaling and addition, i.e., any Gumbel variable
can be generated by scaling and shifting a standard Gumbel.

Eq. (6) is used in inverse transform sampling (see Sec-
tion 2.3) to transform a sample from the Uniform distribu-
tion Uð0; 1Þ into a Gumbel sample via a double (negative)
logarithmic relation. Taking only one negative logarithm of
a Uniform random variable, i.e., X ¼ �logU , defines a sam-
ple from the (standard) Exponential distribution. The Gum-
bel distribution is, therefore, sometimes also referred to as
the ‘Double Exponential’ distribution. Thanks to the afore-
mentioned relations, some properties of the Gumbel distri-
bution are closely related to properties of the Exponential,
and Uniform/Beta distribution, on which we elaborate in
Section 4.1.2.

2.3 Inverse Transform Sampling

Inverse transform sampling is themost commonway to sam-
ple from a distribution. It transforms a standard Uniform
variable into another random variable, via a transformation
characterized by the random variable’s ICDF. Fig. 1 illus-
trates this process for sampling from a categorical distribu-
tion: a sample form a Uniform random variable is inserted
into the ICDF of the categorical distribution in order to find
the corresponding bin/class. Inverse transform sampling is
easy to implement and only requires generation of one ran-
domvariate per categorical sample. It does, however, require
the categorical distribution to be normalized. The ICDF of the
Gumbel distribution (given in Eq. (6)) can equivalently be
used to draw a sample from this distribution.

3 APPLICATIONS

In machine learning, there is significant interest in over-
parameterized modular and structured models, which often
involve one or more stochastic components. When con-
cerned with discrete stochasticity, challenges arise regarding
both sampling from discrete distributions, and gradient esti-
mation thereof.

Sampling from discrete distributions can be achieved
with (among others) inverse transform sampling, or the
Gumbel-max trick [4] (see Section 4.1.1) and extensions
thereof (see Section 4.3). Gumbel-based sampling algo-
rithms have, for example, been used for (discrete) action
selection in a multi-armed bandit setting [10], for sampling
data points in active learning [11], for text generation in dia-
log systems [12], or in translation tasks [13], [14].

When the stochastic components are parameterized, and
the model is trained end-to-end with stochastic gradient-
based methods, gradients need to be taken through the

stochastic sampling process and gradient estimators are
therefore called for. Finding such estimators is particularly
challenging when the stochastic components are discrete.
Relaxations of the (non-differentiable) Gumbel-max trick,
notably the Gumbel-Softmax (GS) estimator and variants
therefore, have been found useful for this purpose, and will
be discussed in Section 5. In this sectionwe review the differ-
ent applications, and refer to any variant of the GS estimator
as a Gumbel-based estimator, in order to provide a general
overview without elaborating on technical details. Applica-
tions are categorized into works that leverage discretized
data, or perform model selection from a discrete (model)
space (see Fig. 2).

3.1 Discretized Data

We interpret the term discretized data in a wide sense here.
This category includes models that rely on discrete repre-
sentations (e.g., categorical probability distributions in dis-
crete latent variable models), attention mechanisms (sub-
selecting data is a discrete choice process), generative mod-
els for inherently discrete data (e.g., GANs for text genera-
tion), and models for data compression.

3.1.1 Discrete Latent Variable Models

Latent variable models assume that ‘the world’ (represented
as training data) has originated from a set of latent (i.e., hid-
den) variables. While such variables are often modelled con-
tinuously, many situations arise in which the choice for
discrete latent variables seems more appropriate (see Fig. 2a).
Such discrete latent variable models have mainly come in
two flavours. On the one hand, one can have a discrete

Fig. 1. Illustration of inverse transform sampling for drawing a sample
from CatðppÞ. A sample from the Uniform distribution is converted to one
of the categories/classes of the categorical distribution via its inverse
cumulative density function. The chance that class i is being sampled
equals pi; the width of the corresponding box in this illustration.

Fig. 2. Categorization of the different applications in deep learning in
which Gumbel-based gradient estimators have been applied in order to
facilitate training via backpropagation through discrete stochastic nodes.
Visualizations in the bottom show where different models exhibit discre-
tized data, indicated by the dashed gray boxes.
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approximation/representation of a continuous (latent) vari-
able (i.e., quantization, as in [15]), while on the other hand,
one could model the data with a discrete (non-degenerate)
distribution in the latent space. In the former case the straight-
through estimator [16] is typically used to facilitate gradient
updates of the encoder. The latter case, on the other hand,
requires sampling from the introduced discrete distribution
to estimate the expectation in the forward pass and its gradi-
ent during backpropagation. This approach is also possible in
quantization settings, as will be discussed in Section 3.1.4. All
following works in the current sub-section have adopted the
second approach and leveraged Gumbel-based estimators for
discrete latent variablemodels.

VAEs with discrete priors are proposed by [17], [18], [19],
and the authors of [20] relax the discrete latents and durations
of a recurrent hidden semi-Markov Model. In some works,
continuous and discrete latent variables have been combined
[21], [22], [23], [24]. The authors of [21] leverage - next to a con-
tinuous latent variable - (only) one categorical random vari-
able, which is then interpreted as a clustering variable that
assigns data points to discrete classes, resulting in a combined
classification- and generative model. Similarly, [23] train a
VAE with a Gaussian Mixture model as prior, where assign-
ment to either of the Gaussians displays a discrete process as
well, and in the same line, the authors of [25], [26] relax back-
propagation of their deep clustering algorithms. Applications
of (Gumbel-based) discrete latent variablemodels as described
above include (among others) planning [27], syntactic parsing
[28], text modelling [29], speech modelling [30], [31], para-
phrase generation [32], recommender systems [33], drug-drug
interactionmodelling [34], and eventmodelling [35].

3.1.2 Attention

Attention mechanisms are concerned with filtering incom-
ing information, analogously to the way we - human beings
- selectively observe the world around us. Hard attention
resorts to either accepting or declining information, while
soft attention refers to placing more emphasis on certain
parts than on others. When training neural networks, only
soft attention allows gradients to flow, so hard (i.e., discrete)
attention mechanisms have been relaxed using Gumbel-
based gradient estimators to enable model optimization.
While the term attention is typically used to denote selectiv-
ity in hidden representations of deep learning models, we
slightly widen the term and present works that select part
of the data (either hard or soft) anywhere in the model (see
Fig. 2b), with the main motivation to improve the model’s
performance or its interpretability. Attention has been used
on latent features to enhance interpretability of ‘black box’
neural networks [36], [37], for hierarchical multi-scale recur-
rent neural networks [38], and in graph neural networks
(GNNs) [39], [40]. The authors of [40] apply attention on
edges with the specific goal of graph clustering. Applica-
tions range from (but are not limited to) recommender sys-
tems [41], pose estimation [42], video classification [43],
event detection [44], and image synthesis [45]. The authors
of [46] apply attention on features of discrete input samples
and an attacking vocabulary, in order to acquire a scalable
method for real-time generation of adversarial examples on
discrete input data. Hard attention on (input) data points

(i.e., learned subsampling) has, moreover, been leveraged to
reduce computational overhead of neural networks, e.g., on
point clouds [47] and graphs [48].

Also decision making in an environment of one or multi-
ple agents can be considered (hard) attention. The authors
of [49] leverage this ‘attention’ to enable end-to-end training
of an agent that makes discrete decisions. In a multi-agent
environment, such decisions have concerned communica-
tion symbol selection [50], [51] in order to learn a language
to be used among agents.

3.1.3 Discrete GANs

Generative Adversarial Networks (GANs) [52] have been a
popular class of generative models. They contain a genera-
tor and discriminator module (see Fig. 2c). The latter’s aim
is to distinguish between real and fake (generated by the
generator) samples. This setup requires differentiability of
the discriminator loss with respect to the generator’s param-
eters. However, in the case of applying a GAN on discrete
data, the discrete and stochastic fashion of the generator’s
output hampers direct differentiability, and has therefore
been a suitable candidate for Gumbel-based gradient esti-
mators. Applications of discrete GANs that have leveraged
these Gumbel-based gradient estimators include (among
others) text generation [53], [54], [55], [56], [57], [58], [59],
fake user data creation for recommender systems [60], and
action prediction [61]. Discrete GANs have also been com-
bined with knowledge distillation frameworks. The authors
of [62], for example, propose to learn a policy (i.e., a trajec-
tory of subsequent states and actions in reinforcement learn-
ing setups) by learning to imitate a (known) expert/teacher
policy. The student model learns this imitation by fooling a
discriminator that should distinguish between both policies.
Such setups may, however, require a large number of train-
ing iterations before the student model converges. To allevi-
ate this, the authors of [63] have proposed the concept of
adversarial distillation in the context of multi-label classifi-
cation, in which both the teacher and student model are
jointly battling against a discriminator that should distin-
guish their (discrete) label predictions from real annota-
tions. Both models learn from each other via distillation
losses, finally resulting in a low-resource student model
that can be used during inference. Both the teacher and stu-
dent model’s output are relaxed using the GS estimator.

3.1.4 Data Compression

Our growing demand for data has sky-rocketed data rates,
hampering data transfer, processing and storage. To alleviate
these rates, data compression comes into play. A shift is cur-
rently being made from non-data-driven compression techni-
ques (e.g., JPEG) to data-driven methods, where parameters
of a neural compressionmodel are learned from a training set
of data. Such models typically encode the data in a quantized
and lower-dimensional space, after which the data are
decoded again (see Fig. 2d).Quantization is a discrete process,
making it a suitable candidate to be learned using a Gumbel-
based estimator. The authors of [64], [65] propose to learn the
quantization levels, which form a quantization codebook,
whereas the authors of [66] learn to select such a codebook as
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a whole. Moreover, data-adaptive binarization has been
learned aswell [67], [68], [69].

The amount of acquired data in the digital domain is gov-
erned by the analog-to-digital (ADC) converter in the sensing
stage. Instead of compressing in the digital domain, the com-
pressed sensing (CS) framework [70] introduces compression
directly at this sensing stage (see Fig. 2d). Simply reducing the
sampling frequency of anADC introduces aliasing artifacts in
case the minimal Nyquist rate is not met. CS leverages inco-
herent sampling patterns (expressed in a sensing matrix) to
beat this famousNyquist rate under certain assumptions. The
typically heuristic (and task-independent) design of this sens-
ing matrix, has been outperformed by a task-conditional (dis-
crete) sensing matrix, learned via a Gumbel-based estimator
[71]. Once trained, such learned sensing system can be imple-
mented in hardware to reduce data rates at the sensing stage
directly. The proposed framework has been applied for medi-
cal ultrasound imaging [72], magnetic resonance imaging
[73], and MIMO antenna arrays [74]. Moreover, it was
extended to a data-conditional setup, by making the sensing
matrix conditional upon already acquired data [75]. Note that
data compression by subsampling can also be considered
(hard) attention, as discussed in Section 3.1.2. Although the
focus of this data compression section is onworks that aim for
data reduction rather thanmodel enhancement.

3.2 Discrete Model Space

The number of available neural models has given rise to
algorithms that not only optimize a model on training data,
but also search for a suitable model itself. Such data-driven
model selection can be leveraged with the aim to just find
better-fitting models, or to find compressed models that
facilitate implementation in dedicated hardware. We distin-
guish methods that learn concepts related to model quanti-
zation, and methods that learn hyper-parameters (often
related to depth and width). The latter is often referred to as
neural architecture search (NAS) or pruning.

3.2.1 Model Quantization

Model quantization can take place on weights, activations
and/or gradients. Joint optimization andquantization requires
differentiability of the quantization operation, making it a suit-
able candidate for Gumbel-based gradient estimators. Indeed,
it was shown that quantization of networkweights and activa-
tions can effectively be learned, by either learning the quantiza-
tion grid while using a pre-defined number of bits [76], or
learning the appropriate number of bits per layer [77]. The
authors of [78] also learn layer-dependent bits assignment by
leveraging a bits budget to be distributed, for quantization of
weights, activations and gradients.

3.2.2 Neural Architecture Search (NAS) & Pruning

Gumbel-based algorithms for discrete NAS of deep neural
networks have been leveraged for distinct goals. Most gen-
eral, hyper-parameters have been learned - rather than set
heuristically - to alleviate the burden of tuning [79], [80], [81].
In case such hyper-parameters relate to the size of the model
(e.g., width or depth), NAS (often called pruning in this case)
is generally usedwith the aim to find small models that facili-
tate implementation in (dedicated) hardware [82], [83], [84],

[85], [86], [87], [88], [89]. Moreover, models have been pro-
posed in which the functionality is conditioned upon incom-
ing data. This conditioning can be applied to improve
performance [86], [90], [91], achieve run-time acceleration
(i.e., reduce computational complexity during inference) [92],
[93], [94], [95], [96], or enhance interpretability [90], [97], [98].
Also multi-task models have been subject to discrete NAS,
where task-dependent gating/branching has been learned
[99], [100]. Considering graphs as structured data models,
NAS has also been leveraged to find suitable graphical repre-
sentations, e.g., by optimizing the adjacencymatrix [98], [101].
Moreover, graph structures are leveraged by Tree-LSTMs
[102], which were later extended to Gumbel-Tree LSTMs,
where graph edges are co-optimized instead of pre-defined
[103]. Gumbel-Tree LSTMs have notably found use in
machine translation [104], [105].

4 SAMPLING ALGORITHMS

In this section we introduce the Gumbel-max trick and its
properties (Section 4.1.1), and link it to concepts known from
different fields, i.e., Poisson processes (Section 4.1.2) and
Boltzmann exploration (Section 4.1.3). We then introduce top-
down sampling using the inverted Gumbel-max trick (Sec-
tion 4.2), followed by sampling algorithms that are extensions
of the conventional Gumbel-max trick (Section 4.3).

4.1 Gumbel-max Trick

4.1.1 Definition and Properties

The Gumbel-max trick [4] draws a sample from a categori-
cal random variable I � CatðppÞ. It does so, by adding i.i.d.
Gumbel (noise) samples to the unnormalized log-probabili-
ties and selecting the index with the maximum value, which
in turn follows a Gumbel distribution. More specifically:

I ¼ argmax
i2D

flog ui þGðiÞg � CatðppÞ and (7)

M ¼ max
i2D

flog ui þGðiÞg � GumbelðlogZÞ: (8)

The arguments Glog ui :¼ log ui þGðiÞ (8i 2 D) are shifted
independent Gumbels, and often referred to as perturbed log-
its. Eq. (8) is known as the max-stability property, which
states that the maximum is independent of the argmax ran-
dom variable: M ?? I. The interested reader is referred to
Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2022.3157042, for the proofs of Eqs. (7) and
(8). Section 4.1.2 provides a more intuitive understanding of
the Gumbel-max trick, by linking it to properties of well-
known Poisson processes.

Scaling (or normalizing) unnormalized probabilities uu by
any positive constant Z, results in a subtraction in logarith-
mic space: log ðuu=ZÞ ¼ log uu � logZ. Given the translation-
invariance of the argmax function, we can see that the Gum-
bel-max trick as defined in Eq. (7), also applies for normal-
ized probabilities pp:

I ¼ argmax
i2D

flog ui þGðiÞg ¼ argmax
i2D

f logpi|fflffl{zfflffl}
log ui�logZ

þ GðiÞg:
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This property is a direct result of the fact that Gumbel ran-
dom variables adhere to Luce’s choice axiom [106], which
states that the probability ratio of selecting two elements
from a set is independent of the other elements present in
that set. Thanks to this independence, a constant scaling of
the probabilities does thus not influence the argmax output.
As a result, the Gumbel-max trick can also be used over
sub-domain B � D, with unnormalized probabilities ui, for
i 2 B [107]:

argmax
i2B

flog ui þGðiÞg � Cat
1ði 2 BÞppP

i2B pi

� �
:

In machine learning applications, the parameters of the cat-
egorical distribution are often learned or predicted. The
Gumbel-max trick is therefore typically used with unnor-
malized - rather than normalized - probabilities, as this
allows for unconstrained optimization of log uu (whereas pp is
a probability vector).

The Gumbel-max trick leverages standard Gumbel noise
samples. Nevertheless, when using i.i.d. samples from
Gumbelðm;bÞ, with m 6¼ 0 and b 6¼ 1ð� 0Þ, the distributions
of the sampled index and maximum can still be defined
analytically:

I 0 ¼ argmax
i2D

flog ui;T þG
ðiÞ
m;bg � Cat

expðaa=ðTbÞÞX
i2D

expðai=ðTbÞÞ

0
BB@

1
CCA; (9)

M 0 ¼ max
i2D

flog ui;T þG
ðiÞ
m;bg � Gumbelðmþ blogZ0;bÞ; (10)

with G
ðiÞ
m;b the i

th independent Gumbel random variable with
location m, and scale b, and Z0 ¼ P

i2D expðai=ðTbÞÞ. Appen-
dix B, available in the online supplemental material derives
the aforementioned relations. Interestingly, from Eq. (9) we
conclude that I 0 � Catðaa; TbÞ. Changing the scale of the
independent Gumbel variates thus changes the temperature
of the Boltzmann distribution from which exact samples are
being drawn (see Section 4.1.3 for a discussion about this
relation).

4.1.2 Link to Reservoir Sampling and Poisson

Processes

As mentioned in Section 2.2, the Uniform/Beta, Exponential
and Gumbel distribution are closely related, and can be
used to express different parameterizations of the same sto-
chastic process. These distinct parameterizations are typi-
cally used in different research areas: the Uniform/Beta
parameterization is notably used for weighted reservoir
sampling [108], whereas the Exponential counterpart is
widely used in queueing theory/Poisson processes [109].
The ‘double Exponential’ parameterization is leveraged for
the Gumbel-max trick [4], and its extensions. The aim of this
section is to provide a summarizing overview of the existing
relations between these distributions, and illustrate this
through an intuitive example. Fig. 3 relates samples and
properties of the three parameterizations (one per column),
and will further be explained in this section. Some of the
connections that are presented have previously been made,
e.g., both the author(s) of [110] and [111] showed the equiv-
alence between weighted reservoir sampling and the Gum-
bel-max trick, and the author of [112] extensively discussed
the relation between Poisson processes, especially Exponen-
tial races, and the Gumbel-max trick.

The ICDF of the Gumbel distribution - as provided in Eq. (6)
- already showed the relation between a Gumbel and a Uni-
form random variable. The Gumbel distribution also relates to
the ExponentialðuÞ distribution (u 2 R�0), which is character-
ized by a CDF being F ðxÞ ¼ 1� e�ux for x � 0 (and 0 for
x < 0), and location E½X� ¼ 1=u. Its ICDF equals F�1ðuÞ ¼
�log ð1�uÞ

u
. Re-introducing X � Exponentialð1Þ as a standard

Exponential randomvariablewith u ¼ 1, allowswriting:

�log ð1� V Þ
u

¼d �log ðUÞ
u

¼ X

u
; (11)

where both V and U are standard Uniform random varia-
bles, and ¼d denotes equality in distribution. Taking the neg-
ative logarithm of Eq. (11), result in:

�log
X

u
¼ �logX þ log u ¼ �log ð�logUÞ þ log u; (12)

from which we can see that the negative logarithm trans-
forms an Exponential random variable into a Gumbel

Fig. 3. The Gumbel (double Exponential) distribution directly relates to the Uniform/Beta and Exponential distribution via a single, respectively double,
negative logarithmic relation. The green ellipses indicate the probability distribution of the corresponding random variable in the cell. To prevent clut-
ter, we here define U :¼ U ðiÞ, X :¼ XðiÞ, and G :¼ GðiÞ, being an ith independent standard Uniform, Exponential, and Gumbel random variable,
respectively.
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random variable, located at log u (right-hand side of
Eq. (12)). Note that for u ¼ 1, this Gumbel turns into a stan-
dard Gumbel variable with m ¼ 0. Rows I and II in Fig. 3
relate both the standard and parameterized Uniform/Beta,
Exponential and Gumbel distributions. The green ellipses
indicate the corresponding distributions.

Besides relating the distributions, we can also link some
properties of the Gumbel-max trick to properties of a Pois-
son process; a stochastic process widely used for modelling
the occurrence of events over time. Thanks to the wide
study of this process, many readers might have an intuitive
understanding about its properties, enabling introduction
of these relations via an intuitive example.

The Exponential distribution models the time between
sequential events occurring according to a Poisson process.
The distribution’s parameter u represents the intensity (or
rate), expressed in events per time unit. As an example, con-
sider a scientific poster presentation where on average 8 stu-
dents and 2 professors arrive per hour, both according to
independent Poisson processes. The Exponential distribu-
tion models the time between subsequent arrivals of stu-
dents and professors (with intensities 8 and 2, respectively).
We can sample the arrival process by independently sam-
pling these two Exponentials. From this example we intui-
tively realize that P ½I ¼ student� ¼ ustudent

ustudentþuprof:
, i.e., the

probability that the first person to arrive is a student2 equals
8

8þ2 ¼ 0:8. This property can be linked to the Gumbel-max
trick. Formally, given XðiÞ � Exponentialð1Þ i.i.d. 8i 2 D,
Eq. (12), and the monotonicity of the logarithmic function,
the following equalities hold:

I ¼ argmax
i2D

flog ui þGðiÞg ¼ argmax
i2D

flog ui � logXðiÞg

¼ argmin
i2D

fXðiÞ=ui|fflfflffl{zfflfflffl}
�Exp:ðuiÞ

g � CatðppÞ: (13)

Thus P ½I ¼ v� ¼ pv ¼ uv=
P

i2D ui, which indeed coincides
with our intuitively derived probability P ½I ¼ student�.
Row III in Fig. 3 displays this relation, as well as the relation
to the Beta/Uniform distribution. The latter is known from
the field of weighted reservoir sampling [108], and can
directly be deduced from the Exponential reparameteriza-
tion by taking the negative exponent of the Exponential
sample (which, in turn, switches the argmin function to arg-
max thanks to 1=expð	Þ being monotonically decreasing).

Instead of independently sampling the two Exponentials
(i.e., one for students and one for professors), we can develop
an alternative but equivalent sampling process thanks to the
memoryless property of the Exponential distribution3. More
specifically, we can sample the arrivals of people (students
and professors) at the poster from an Exponential with an
intensity of 8þ 2 ¼ 10 persons per hour, and then indepen-
dently assign each arrival to either being a student or profes-
sor with probabilities 0.8 and 0.2, respectively. The fact that
this ‘merged’ Poisson process can be sampled using an Expo-
nential with rate Z ¼ P

i2D ui, relates to the max-stability
property of independent Gumbel variables. Row IV of Fig. 3

shows the relation between the three different parameteriza-
tions. The actual value of the optimum in the Exponential
parameterization equals the shortest arrival time, i.e., the
time at which the first person arrives. Note that this time
does not provide any information about the person being a
student or a professor, i.e., the index and value of the opti-
mum are independent, analogously to the independence
between I andM in the Gumbel-max trick.

4.1.3 Exploration versus Exploitation

Sampling from a categorical distributionmay in some applica-
tions adhere to an exploration-exploitation dilemma, where
exploitation of already acquired information should be bal-
anced with exploration of new information (e.g., when sam-
pling an action in reinforcement learning). Pure exploitation
often results in greedy solutions that appear sub-optimal in
the long run, while continuously exploring newdirections can
also cause sub-optimality and instable or diverging behavior.

A common approach to deal with this dilemma is Boltz-
mann exploration [113], in which the temperature T of the
Boltzmann distribution is gradually lowered during train-
ing, therewith reducing the distribution’s entropy, and
moving from an exploration to an exploitation regime. Evi-
dently, one can change the Boltzmann temperature and use
inverse transform sampling to draw a sample from the cate-
gorical. On the other hand, from Eq. (9) we see that samples
from a tempered categorical distribution (i.e., T 6¼ 1) may
also be drawn using the Gumbel-max trick, either by chang-
ing the Boltzmann temperature explicitly, or by changing
the scale b of the Gumbel distribution, from which indepen-
dent samples are being drawn. Note from Eq. (6) that such
noise samples are simply scaled (with b) samples from the
standard Gumbel distribution. Intuitively, down-scaling
(i.e., setting b < 1) the injected noise in the Gumbel-max
trick thus perturbs the logits in a lower extent, therefore giv-
ing rise to a lower-entropy categorical distribution from
which we are effectively sampling. Fig. 4 visually relates
sampling using an altered Boltzmann temperature (start in
the bottom left and follow track A ! D ! F ) and sampling
using scaled Gumbel noise (start in the bottom left and fol-
low track B ! C ! G). Fig. 8 in Appendix C, available in
the online supplemental material, shows results of sampling
experiments for various values of b.

This relation between the Boltzmann temperature and
Gumbel noise scaling in the Gumbel-max trick, has been
used by the authors of [10], who propose Boltzmann–Gum-
bel exploration (BGE), an algorithm - inspired by the Gum-
bel-max trick - in which a class-dependent Gumbel noise
scaling factor (i.e., bðiÞ) is used to guarantee sub-linear
regret in a stochastic multi-armed bandit problem. In con-
trast to a class-independent scaling factor, class-dependent
scaling factors do not admit an analytical expression for the
resultant categorical distribution. BGE was later leveraged
in a recommender system setting by the authors of [114],
who more explicitly expressed the relation between the
Boltzmann temperature and Gumbel noise scaling.

A similar exploration-exploitation trade-off exists in the
field of natural text generation, where generated text should
be of high quality (analogous to exploitation), but also
diverse (analogous to exploration). Next to temperature

2. This can be shown by computingP ðXs < XpÞwhereXs,Xp are the
Exponential inter-arrival times for students/professors, respectively.

3. P ðX > t1 þ t2jX > t1Þ ¼ P ðX > t2Þ.
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scaling [55], [59], other algorithms have been proposed to
balance the aforementioned trade-off in this field, e.g., redis-
tributing all mass of the Boltzmann distribution to either the
k classes covering the top-k highest probabilities [115], or the
p classes covering the top-p ratio of the total mass [116]. Note
that for b ¼ 0 in Eq. (9) (i.e., no Gumbel noise is injected), the
Gumbel-max trick resorts to setting k ¼ 1 in the work of
[115]; i.e., all mass is redistributed to the classwith the largest
probability (resulting in a zero-entropy one-hot distribution)
and sampling becomes a deterministic (argmax) function.

4.2 Inverting the Gumbel-max Trick: Top-Down
Sampling

Both the argmax and max function in Eqs. (7) and (8),
respectively, are surjective/many-to-one mappings, i.e.,
numerous (multi)sets5 of perturbed logits exist that result in
the same index I or maximum M. In certain scenarios one
can be interested in reverting this sampling process, i.e.,
inferring the shifted Gumbels (i.e., perturbed logits) that
may have generated a particular sample/index or maxi-
mum. This reversion is often referred to as top-down sam-
pling [13], [107]. To denote the standard procedure, i.e., the
‘conventional’ Gumbel-max trick in which Gumbels are
sampled unconditionally, the term bottom-up sampling was
introduced [107]. The notion of top-down sampling gave

rise to several applications, ranging from Gumbel-based
sampling algorithms [13], [14], [107], [117], [118], gradient
estimators [119], [120], [121], counterfactual outcome pre-
diction in structural causal models [122], and discrete flow
models [123]. We will elaborate on the principles of top-
down sampling in this section.

We seek a set ofN independently perturbed logits, with a
maximumvalueM ¼ m, located at index I ¼ v. Given either
of the two (i.e., the maximum or index), we can - thanks to
their independence - always sample the other from CatðppÞ
(sampling I) or GumbelðlogZÞ (sampling M). Once both the
maximum and corresponding index are known/sampled,
the value of all (N � 1) other perturbed logits should now be
restricted to be 
 m. Acquiring Gumbels, given this restric-
tion, can be achieved by drawing them from a right-trun-
cated Gumbel distribution [107], [124]:

~Glog ui1;m � TruncGumbelðlog ui; 1;mÞ; (14)

with the ICDF of TruncGumbelðm;b;mÞ being:

F�1ðuÞ ¼ �blog ðexpðm�m

b
Þ � loguÞ þ m: (15)

Analogous to the max-stability property given in Eq. (8), the
maximum of a set of independent samples from
TruncGumbelðlog ui; 1;mÞ, follows again a truncated Gum-
bel distribution:

max
i2D

f ~Glog ui;1;mg � TruncGumbelðlogZ; 1;mÞ: (16)

Fig. 4. Drawing a sample from a categorical distribution can be done via different paths. The most suitable path depends on the context in which one
would like to draw a sample. One can start from either the unnormalized log-probabilities aa (and a Boltzmann temperature T ), or the normalized prob-
abilities pp. The green ellipses in the upper right corner of certain nodes indicate that the node represents a random variable following the distribution
indicated in the ellipse. The different partition functions ZD all normalize their corresponding node, their input is omitted for readability reasons. The
yellow square boxes are used to refer to certain paths in the text. A Jupyter Notebook that accompanies this figure is publicly available.4

4. https://github.com/iamhuijben/gumbel_softmax_sampling
5. A multiset or bag is a set in which an element can occur multiple

times.
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The top-down sampling procedure can be summarized as
follows, 8i 2 D:

Glog ui;1jfv;mg ¼
m i ¼ v

�log ðexpð�mÞ � logUðiÞ
ui

Þ i 6¼ v:

(
(17)

The second case (i 6¼ v) expresses the ICDF of
TruncGumbelðlog ui; 1;mÞ. In case m was sampled from
GumbelðlogZÞ (rather than given), m ¼ �log ð�logUðvÞÞ þ
logZ, and expð�mÞ reduces to �log ðU ðvÞÞ=Z. Equivalent
expressions were given by the authors of [[119], App. C]
(assuming Z ¼ 1), and [[121], Eq. (9)].

The authors of [13] observe that, when conditioning on
M ¼ m, we can even directly provide an expression for all
perturbed logits without explicitly sampling I ¼ v first.
More specifically, a set of (unconditional) Gumbels Glog ui �
Gumbelðlog uiÞ8i 2 D, with maximum q ¼ max

i2D
fGlog uig, can

be transformed to conditional Gumbels ~Glog ui;1;m, via the
respective (inverse) CDFs. More specifically, 8i 2 D:

~Glog ui;1;m :¼ Glog ui;1jm ¼ F�1
m ðFqðGlog uiÞÞ; (18)

where Fqð	Þ and F�1
m ð	Þ denote the CDF and ICDF of trun-

cated Gumbel distributions6, both located at log ui, and trun-
cated at q and m, respectively. The set f ~Glog ui;1;mgi2D is now
ensured to have a maximum m. Fig. 5 visually summarizes
both the bottom-up and the top-down sampling procedure.

Rather than simultaneously sampling all conditional
Gumbels for i 6¼ v, they could also be acquired sequentially.
This enables conditional Gumbel sampling for applications
in which one is not interested in the perturbed logits over
the entire domain D, because it is typically too large. The
authors of [107] note that hybrid top-down sampling for-
mats (i.e., approaches that are in between simultaneous and
fully sequential sampling) can also be used without loss of
generality. They propose to partition the sampling space
into two (random and mutually exclusive) sub-domains,
and apply the sequential process within these domains sep-
arately. Their top-down construction algorithm generalizes
the sequential conditional sampling procedure, and is pro-
vided in Appendix D, available in the online supplemental
material.

4.3 Extended Sampling Algorithms

The Gumbel-max trick requires N Gumbel realizations to
draw one sample from a categorical distribution of N clas-
ses. This can become cumbersome when drawing many
samples, or even intractable when drawing a sample from
an exponentially large domain (i.e., large N). Fortunately,
its theoretical properties naturally extend to sampling algo-
rithms with varying purposes, e.g., sampling with or with-
out replacement, and sampling from structured models.
This section discusses such Gumbel-based sampling algo-
rithms, which are summarized in Fig. 6, including conven-
tional alternatives. The top and bottom row display the
unstructured and structured setting, as discussed in Sec-
tions 4.3.1 and 4.3.2, respectively. Algorithms that require a
normalized distribution, i.e., a known partitioning function

Z, are denoted with a superscript z. Green ellipses indicate
the distribution (when known), from which algorithms
return samples. Note that soft samples (first column of
Fig. 6) are discussed in Section 5.

4.3.1 Unstructured Distributions

Drawing a single sample from an (unstructured) categorical
distribution can among others be done using inverse trans-
form sampling (Section 2.3), and the Gumbel-max trick (Sec-
tion 4.1.1). Fig. 4 visually relates these sampling algorithms.
The A� sampling algorithm [107] can be interpreted as a
continuous counterpart of the Gumbel-max trick, that sam-
ples from continuous domains (i.e., N ! 1). A� sampling
does - analogously to the Gumbel-max trick - not require
knowledge about the partition function Z. It leverages top-
down sampling (as explained in Section 4.2) and bounds
related to Gumbel processes [107], to diminish the number
of i.i.d. Gumbels to be drawn, while still guaranteeing exact
samples from unnormalized continuous distributions.

Sampling With Replacement.
Repeating a discrete sampling process, we can drawmul-

tiple (independent) samples with replacement. Depending
on whether the order of samples is considered, this gives
rise to an (ordered) sequence, or an (unordered) bag or multi-
setof samples. Such sequences and bags (or certain represen-
tations thereof) can in itself be considered samples from
structured models (see Section 4.3.2). For example, when a

Fig. 5. Sampling Gumbels and the corresponding argmax I and maxi-
mum M, can be done in a bottom-up or top-down approach. The former
finds the ðargÞmax from the perturbed logits, starting from the Gumbels.
Top-down sampling, on the other hand, starts from either M and/or I,
and conditionally samples the corresponding perturbed logits. The maxi-
mum and argmax are independent (??), allowing for independent sam-
pling of either of them in case only the other entity is known. The top-
down procedure can be applied in parallel for the entire domain D
(depicted) or sequentially (not visualized).

6. The ICDF of TruncGumbelðm;b;mÞ is provided in Eq. (15).
TheCDF is expressed asF ðxÞ ¼ expð�expð�minðx;mÞ�m

b
ÞÞ=expð�expð�m�m

b
ÞÞ.
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bag of samples is represented as a vector of counts over the
complete categorical sampling domain, this vector has a
(structured) distribution that is known as the multinomial
distribution. Formally, the counts-vector resulting from
drawing k samples (with replacement) from CatðppÞ is a sin-
gle sample from Multinomialðpp; kÞ. Therefore, the same
sampling process may give rise to different distributions,
depending on what is considered ‘the sample’.

When repeated samples from the categorical are drawn
using the Gumbel-max trick, it may be possible to gain effi-
ciency by reusing computations, as proposed by the authors
of [107], [125].

Sampling Without Replacement.
When rejecting (or removing) duplicates from the bag or

sequence of samples drawn with replacement, we obtain a
set, respectively sequence, of unique samples. This can be
seen as sampling without replacement, implemented using
rejection sampling, where proposals (i.e., individual sam-
ples from the bag/sequence) get rejected if they have
already been sampled. Depending on the distribution, it
may require many proposal samples to acquire a sequence
or set of k unique elements (e.g., repeated sampling from a
low-entropy distribution often returns the same class).
Therefore, a more common alternative to rejection sampling
is to sequentially sample without replacement by removing a
sampled element from the sampling domain, renormalize
the distribution, and continue to draw the next (unique)
sample from the updated domain. The subsequent (condi-
tional) samples are typically sampled using standard
inverse transform sampling.

If the order of the resulting unique samples is consid-
ered, this process gives rise to a probability distribution
over sequencesX of length k:

pðXÞ ¼
Yk
i¼1

pðxiÞ
1�P

j< i pðxjÞ : (19)

When k ¼ N , i.e., the full domain is sampled, this represents
a distribution over permutations known as the Plackett-Luce
model [126], [127]. When we do not care about the order of
the unique samples, we can find the probability for a certain
set of samples S, by summing the probabilities for all possi-
ble permutations of S:

pðSÞ ¼
X

X2PermðSÞ
pðXÞ: (20)

This probability distribution is a special case of the Wal-
lenius’ noncentral hypergeometric distribution [128], [129],
and can be computed exactly in OðN!Þ, or approximated by
an integral [129], [130].

Renormalizing the distribution for sequential sampling
without replacement (as done in Eq. (19)) may be difficult/
intractable, especially in large domains. An appealing alter-
native is to use the Gumbel-max trick on the updated
domain (being a subset of the original sampling domain), as
it avoids the need for explicit renormalization. Even more
interesting, when we apply the Gumbel-max trick repeat-
edly for sampling without replacement, the N perturbed
logits can be reused for all k samples, by simply selecting the
top-k perturbed logits in a single step [110], [111], see Fig. 7.
This algorithm, which has become known as Gumbel-top-k
sampling [14], is a strict generalization of the Gumbel-max
trick (which is the special case for k ¼ 1). This parameteriza-
tion of sampling without replacement allows for another
derivation of the integral to approximate Eq. (20), or to com-
pute it exactly in Oð2NÞ [131].

Fig. 6. Overview of sampling algorithms for different scenarios: single (discrete or soft) or multiple sample(s) from (un)structured distributions. For all
cases, both default/conventional and Gumbel-based algorithms are given. The green ellipses indicate the distribution from which samples of the indi-
cated algorithms originate. In case of empty ellipses, it is unknown which distribution the samples follow. A superscript z indicates that the algorithm
requires normalized probabilities, i.e., partition function Z should be known.
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Gumbel-top-k sampling is analogous to weighted reser-
voir sampling, as shown by [110], [111]. The latter uses the
Beta-distribution parameterization (see Section 4.1.2), and
selects the top-k perturbed keys using a priority queue,
enabling sampling from streaming applications [108]. Gum-
bel-top-k sampling also has connections to ranking litera-
ture, as it was shown by [106] that the Gumbel distribution
is the only distribution of discriminal scores in a Thursto-
nian ranking model [132], inducing a ranking that satisfies
Luce’s axiom of choice [127].

Samples without replacement can be used to form statis-
tical estimators of functions of the underlying categorical
distribution [131], [133], [134], [135], [136]. Similar ideas
have been used to construct gradient estimators for the pro-
cess of sampling without replacement (see Section 5.2).

4.3.2 Structured Distributions

The Gumbel-max trick can be seen as an instance of perturb-
and-MAP [137], which is a class of methods that transform
sampling into an optimization problem, where the sample
corresponds to the optimum of a perturbed energy function.
Specifically, in the context of the Gumbel-max trick, the
energies correspond to (unnormalized) log-probabilities
and the argmax operator represents the optimization prob-
lem, i.e., ‘finding the maximum’ of the perturbed log-proba-
bilities/energies. Whereas finding the maximum in an
unstructured setting with a limited number of classes is
hardly considered a ‘problem’, it is challenging in struc-
tured models, where there are multiple dependent variables
with a sampling domain of exponential size. Various
(approximate) sampling algorithms have been proposed,
which rely on the perturb-and-MAP principle by finding
the (approximate) maximum of the perturbed energy over
all possible configurations of such structured models [137],
[138], [139], [140], [141].

Note that there is a vast amount of literature on alterna-
tives to sample from structured models. Standard ancestral
sampling can, for example, be used when the conditional dis-
tributions for variables are normalized (i.e. the partition
function is known), whereas Markov Chain Monte Carlo
(MCMC) sampling [3] and variants thereof can be leveraged
when Z is unknown. In this section, we focus on methods
related to Gumbel variables, such as the perturb-and-MAP
paradigm.

The Gumbel-max trick can be seen as a reparameterization
trick [1], [142], that allows to sample a categorical variable as a

deterministic transformation of independent (Gumbel) noise
variables. This reparameterization property is exploited by
the authors of [118], that aim to parallelize sampling by fore-
casting (reparameterized) samples from a sequential model.

Multiple Samples.
Whereas samples with or without replacement (from

unstructured distributions) can in itself be seen as a single
sample from a structured distribution (e.g., over sets or
sequences), it is also possible to draw multiple samples
(with or without replacement) from structured distributions
themselves (see bottom right corner of Fig. 6). For example,
we can draw a set (or sequence) of (unique) sequences from
a (neural) sequence model. The authors of [143], [144] show
how to efficiently compute multiple (structured) samples
with replacement from unnormalized distributions using
the perturb-and-MAP paradigm. When a structured distri-
bution is normalized, such as in neural sequence models,
generalizations of ancestral sampling can be used to effi-
ciently draw samples without replacement. Examples of
such algorithms are stochastic beam search [13], or its general-
ization ancestral Gumbel-top-k sampling [14], which implicitly
apply Gumbel-top-k sampling using top-down sampling
(Section 4.2), and UniqueRandomizer [117], which applies
sequential sampling without replacement using an efficient
data structure to compute the necessary renormalizations.

5 GRADIENT ESTIMATION IN NEURAL NETWORK

OPTIMIZATION

Section 3 introduced various applications of gradient esti-
mation of discrete stochastic nodes in neural network opti-
mization. Most Gumbel-based estimators (as discussed in
Section 5.2) build upon the recently introduced Gumbel-
Softmax distribution, which will be discussed in Section 5.1.

5.1 Gumbel-Softmax Distribution

Instead of drawing hard/discrete samples from an
(unstructured) categorical distribution, one can also define
soft samples, which may notably be used for gradient esti-
mation. To see the relation between these hard and soft
samples, we must consider the hard samples in their one-
hot embedding format, i.e., 1v 2 f0; 1gN . A soft sample S�

can then be defined as a vector of equivalent length, in
which the mass is ‘spread out’ over multiple bins, rather
than centered in one class. Concurrent works [5], [6] have
introduced the Gumbel-Softmax (GS; or Concrete) distribu-
tion, of which an exact sample is a relaxation of 1v. We refer
to [5], [6] for (derivation of) the PDF of this distribution,
here denoted with GSðpp; �Þ. More specifically, the ith index
of soft sample S� 2 fRN

�0 : jS�j ¼ 1g is defined as:

Si;� ¼ exp ðlog ui þGðiÞÞ=�� �P
j2D exp ðlog uj þGðjÞÞ=�� � ; (21)

where � is a temperature parameter that influences the
entropy of both the GS distribution, and the corresponding
samples. Viewing these samples as relaxations of samples
from CatðppÞ, � can also be interpreted as a parameter that
defines the ‘amount of relaxation’ of soft sample S�. In the
limit of � ! 0þ, S� converges to hard sample 1v, and the
PDF of the GS distribution converges to CatðppÞ. In fact,

Fig. 7. Illustration of Gumbel-top-k sampling. Figure adapted from [14].
Gumbel-top-k perturbs all logits with i.i.d. Gumbel samples, and returns
the index of the k perturbed logits with the highest values. These indices
yield k independent samples without replacement from CatðuuÞ.

HUIJBEN ETAL.: REVIEW OF THE GUMBEL-MAX TRICK AND ITS EXTENSIONS FOR DISCRETE STOCHASTICITY IN... 1363

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on February 14,2023 at 08:51:07 UTC from IEEE Xplore.  Restrictions apply. 



drawing a GS sample can be interpreted as solving an
entropy-regularized (by �) linear program on the probabil-
ity simplex [145].

In the special case ofN ¼ 2, i.e., when the categorical dis-
tribution converges to the Bernoulli distribution, the soft-
max function in the GS distribution can be replaced by its
binary counterpart, the sigmoid function [5], [6].

Analogously to the Gumbel-max trick, S� is invariant to
scaling of the unnormalized probabilities in uu: scaling (the
entire vector with the same constant) in probability space
results in addition in log-space, which leaves the transla-
tion-invariant softmax function in Eq. (21) unaffected. More-
over, relaxing 1v, using S�, preserves order, i.e., S� can
immediately be transformed to 1v via the argmax operation
(see the upper left cell in Fig. 6). Fig. 4 visually relates hard
and soft samples. Also the relation between both tempera-
tures � and T (see track B ! E) is shown, which will further
be discussed in Section 6.4. Fig. 8 in Appendix C, available
in the online supplemental material, shows results of sam-
pling experiments with various values of �. An interactive
setup to repeat these experiments is provided with this
work7.

Although the GS distribution has (so far) found most use
as a means to relax discrete stochastic nodes for differentia-
ble neural network optimization, it has recently also found
use in relaxing a maximum-a-posteriori (MAP) objective in
the context of inverse problems with discrete multi-variate
random variables [146], and in solving combinatorial prob-
lems [147].

5.2 Gradient Estimators

Most of the applications discussed in Section 3 pose modu-
lar machine learning models that involve one or several dis-
crete stochastic components. We highlight the challenges
posed by training such models by considering a simplified
setting with the following optimization program:

minfEX½fðXÞ� with X � pf; (22)

whereX is a random variable, pf is a probability distribution
parameterized by f, and f some function with range in R.
The expectation is taken over random variableX and notably
depends on f. Using gradient-based methods to optimize
Eq. (22) requires an estimator8 forrf :¼ dEX½fðXÞ�=df. There
are at least two groups of estimators that could be considered,
score-function estimators and pathwise estimators [148].

The score-function estimator, also known as REINFORCE
estimator [149], [150], is in its simplest form given by

rREINF :¼ fðXÞ @log pfðXÞ
@f

: (23)

This estimator makes minimal assumptions on pf and f and
is notably applicable when X is a discrete random variable.
The estimator is unbiased [148, Section 4.3], but tends to
have high variance that may render it ineffective in practical

applications. To reduce its variance, numerous gradient
estimators based on Eq. (23) have been proposed. Many of
these estimators involve control variates [119], [120], [151],
[152], sometimes in conjunction with drawing multiple sam-
ples from the discrete distribution [131], [153], [154], [155].

Pathwise estimators are also known as reparameteriza-
tion gradient estimators [1], [156]. They reparameterize the
random variable X using an auxiliary random variable �
and a deterministic path hð�;fÞ, such thatX ¼ hð�;fÞ for � �
pð�Þ. This reparameterization can be exploited to inter-
change the differential and expectation operators, giving
rise to a gradient estimator of the form

rREPARAM :¼ @fðXÞ
@X

@hð�;fÞ
@f

: (24)

This estimator makes more assumptions on pf and f [148,
Section 5]. It, for example, requires f to be differentiable
and the reparameterization of X to be continuous. When
well-defined, the pathwise estimator is unbiased and tends
to have low variance, which makes it a popular choice in
practice. Unfortunately, discrete random variables do not
admit reparameterization gradient estimators, because their
reparameterizations are discontinuous (e.g., consider the
discontinuous argmax operator in the Gumbel-max trick).
Therefore, for discrete random variables, relaxed gradient
estimation was proposed [5], [6], [157]. Relaxed gradient
estimators approximate a discrete random variable with a
continuous random variable that admits a reparameteriza-
tion gradient. This reparameterization gradient is then used
as a biased gradient estimator for the parameters of the dis-
crete distribution. Notably, the continuous random variable
is only used during training to give a gradient estimator,
while at test time the model is evaluated using the discrete
random variable. For various discrete distributions, relaxed
gradient estimators have been proposed, which we now
briefly survey.

5.2.1 Gradients for Sampling Unstructured Distributions

When X is a categorical random variable, the GS estimator
[5], [6] is a popular estimator. It approximates the categori-
cal distribution with the GS distribution (as presented in
Section 5.1). The estimator is given by

rGS :¼ @fðS�Þ
@S�

@S�

@f
; (25)

where S� ¼ softmax� fþGGð Þ, with f ¼ log uu and GG a vector
of i.i.d. Gumbel variables (see Eq. (21)). For this estimator to
be well-defined, f must be defined and differentiable on the
interior of the simplex. The GS estimator reduces variance
at the expense of introducing bias: rGS is an unbiased esti-
mator of dES� fðS�Þ½ �=df, but a biased estimator of rf.
Empirically, the temperature parameter � of the GS distri-
bution can be used to trade-off bias and variance of the gra-
dient estimator. Lower temperatures tend to be associated
with higher variance, but reduced bias. An important vari-
ant of the above estimator is the straight-through GS (ST-
GS) estimator [5], [121] that replaces S� with X in the first
term of Eq. (25) (i.e., it uses non-relaxed computations in the
forward pass). Other work has proposed the use of

7. https://iamhuijben.github.io/gumbel_softmax_sampling.html
8. If pu is designed to be a degenerate distribution, i.e., there is no

stochasticity (e.g., as in [15]), both the expectation and its gradient do
not need to be estimated. Therefore, we only consider cases where pu is
a non-degenerate distribution.

1364 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on February 14,2023 at 08:51:07 UTC from IEEE Xplore.  Restrictions apply. 

https://iamhuijben.github.io/gumbel_softmax_sampling.html


alternative continuous distributions to obtain relaxed gradi-
ent estimators for categorical distributions [157], [158] that
may lead to improvements in some applications.

5.2.2 Gradients for Sampling Structured Distributions

Recent works have extended the GS estimator from categori-
cal distributions to structured distributions [157, and refer-
ences therein]. For example, various gradient estimators
have been proposed for the case whereX is a subset of fixed
size [36], [111], [157]. The authors of [36] propose a relaxation
that uses repeated samples from the GS distribution to relax
subset selection, and [111] use successive applications of the
softmax function. The authors of [157] present a framework
that naturally extends the Gumbel-max trick and its relaxa-
tion to other structured variables and use it to define various
relaxed gradient estimators for subset selection. For the case
where X is a permutation, the GS distribution has been gen-
eralized into the Gumbel-Sinkhorn distribution to obtain a
relaxed gradient estimator [145], and the authors of [159]
and [160] develop gradient estimators based on alternative
transformations.

6 PRACTICAL CONSIDERATIONS

When using Gumbel-based (soft) sampling algorithms, sev-
eral implementations and settings might be considered.
This section reviews distinct options and commonly-made
choices.

6.1 Parameterization of the Logits

Each of the presented algorithms in Section 4 (see Fig. 6) rely
on availability of (normalized or unnormalized) probabili-
ties of a categorical distribution. These probabilities can
either be considered trainable parameters (i.e., they are opti-
mized over the full training set), yielding direct optimiza-
tion, or they can be optimized indirectly, e.g., by predicting
them by a neural network. Both options will be discussed
below.

6.1.1 Direct Parameterization

When considering direct optimization of the unnormalized
log-probabilities (or logits), the number of trainable parame-
ters typically equals the number of classes in case of a flat/
unstructured distribution. For structured distributions, the
number of trainable parameters is typically smaller than the
number of possible structures. The work of [71], e.g., distin-
guishes two parameterizations for subset sampling. On the
one hand k samples without replacement can be drawn
from one set of logits (referred to as topK sampling in their
work), while on the other hand these samples could each be
drawn from their own categorical distribution (top1 sam-
pling). Even though the top1 parameterization allows for
learning dedicated distributions for each of the samples,
this parameterization was not found to consistently outper-
form the topK counterpart. A similar observation was
reported by [31], where on par results were found when
either sharing or not sharing learned (via ST-GS) quantiza-
tion codebooks among latent groups. Imperfect optimiza-
tion could explain these observations.

6.1.2 Indirect Parameterization

Logits are often parameterized by a neural network when
conditionality on incoming data is required. Example appli-
cations of such data-conditionality entail NAS [92], [93],
[94], attention [39], active data acquisition [75], and when
GS is used at the output of a GAN’s generator [53]. The
number of trainable parameters that parameterize the logits
now depends on the architecture of the logit-predicting
model. Despite being unrestricted in size, such models are
often designed to be simple and shallow in practice [25],
[31], [39], [64], [75], [93].

Taking a different approach, the GS estimator can also be
used without explicitly predicting the logits themselves, but
by inferring them from already drawn samples from the cat-
egorical distribution [57], leveraging conditional Gumbel
sampling [107] (see Section 4.2).

6.1.3 Standard Implementations

Independent of the logits being directly or indirectly param-
eterized, once the unnormalized logits are known and one is
interested in drawing one GS-sample from a set of unnor-
malized logits, implementations from popular deep learn-
ing libraries Tensorflow9 [161] and Pytorch10 [162] can be
used. The Pytorch implementation also facilitates the ST-GS
estimator, i.e., drawing a hard sample in the forward pass,
which is not supported by the current Tensorflow imple-
mentation. More extended Gumbel-based sampling algo-
rithms and corresponding gradient estimators have not yet
been implemented in standard libraries.

6.2 Initialization and Regularization

Considerations can be made regarding the initialization and
regularization of the logits in the Gumbel-(soft)max trick.
Typical initializations consider small random values [37],
e.g., drawn from a Uniform [100] or Gaussian distribution
[71], or set all logits to zero [78]. Others have based initiali-
zation on a priori knowledge regarding the distribution [25],
[72], [74], or a desired sampling rate [82], [92], [98].

Also various regularization strategies have been pro-
posed. In the context of model pruning, logits often repre-
sent the (unnormalized) log-probability with which certain
elements (e.g., layers, kernels etc.) should be selected (i.e.,
sampled) to be part of the model architecture. In this field, a
sparsity-promoting loss is often leveraged to penalize dense
and/or large models, which indirectly influences the logits
during training [86], [87], [88], [93], [95], [96], [98].

With the goal of learning a subsampling matrix for data
compression, the authors of [71] regularize the logits more
directly by promoting low-entropy distributions. Con-
versely, when GS is used in discrete GANs, entropy of the
generator’s (output) distribution is often maximized rather
than minimized, in order to stabilize optimization and pre-
vent mode collapse (which is the case when the generator
outputs non-diverse samples) [43], [57], [99]. To deal with
this diversity-quality dilemma in GANs, also distance

9. https://www.tensorflow.org/agents/api_docs/python/
tf_agents/distributions/gumbel_softmax/GumbelSoftmax

10. https://pytorch.org/docs/stable/generated/torch.nn.
functional.gumbel_softmax.html
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regularization in latent space has been leveraged [55], [61],
promoting closeness of embeddings, and therefore (indi-
rectly) influencing the logits predicted by the generator.

Finally, regularization has also been based upon a priori
knowledge, e.g., about a prior distribution, for which the
KL divergence between the learned logits and this prior can
be leveraged [50], [79], or about labels in semi-supervised
learning [30], [32]. In the latter setup, the authors of [30],
[32] penalize the categorical cross-entropy loss on the pre-
dicted probabilities in a latent space, given some labels.

6.3 Setting the Gumbel-Softmax Temperature �

As introduced in Section 5.1, the GS distribution introduces
an additional hyper-parameter �. The authors of [6] show
that, as long as � 
 ðN � 1Þ�1, with N being the number of
classes, the GS distribution is log-convex. In other words, it
will not have a mode in the interior of the N-1-simplex. This
is a desirable property of a relaxation, in order to not relax
discreteness ‘too much’, which could result in a consider-
able performance gap when subsequently evaluating the
(non-relaxed) discrete model. Despite this theoretical
insight, the empirically optimal value was, nevertheless,
often found to be higher [6]. This may be a result of the bias-
variance trade-off which is present when gradient estima-
tion is done on GS samples. A high value of � induces high
bias, but low variance, while a lower value diminishes this
bias, but increases the variance, and leads to vanishing gra-
dients for t ! 0þ. In line with [6], the authors of [5] did nei-
ther find conclusive answers on how to set �, and used a
constant value in some experiments, and an exponential
(decaying) annealing scheme in others.

Summarizing the most popular settings for � in practice,
it can be seen that simply fixing its value between 0.1 and
1.0 is often done both for the GS estimator [51], [83], [87],
[100] and the ST-GS estimator [30], [54], [55], [56], [59], [60],
[86], [88], [93], [97], [103]. Other works have annealed the
temperature with various schemes from a value between
1.0 and 5.0 to a value in the range 0.1-0.5 [31], [47], [67], [69],
[72], [83], [87], [100].

Finally, � could also be made trainable (or parameterized
by a neural network), providing the model the freedom to
learn the optimal entropy of the GS distribution (and the
corresponding samples) [5]. The authors of [38], [50] indeed
both predict the (inverse) temperature with a (shallow)
hyper-model. Both works propose a formula that yields a
temperature between 0 and 1.

6.4 Interaction Between � and T

Section 4.1.3 already explained how the Boltzmann temper-
ature T yields a diversity-quality or exploration-exploita-
tion trade-off, when sampling from a Boltzmann
distribution (i.e., a tempered categorical). When the GS dis-
tribution is used to relax this categorical to enable gradient
estimation, the two different temperatures (i.e., Boltzmann
temperature T , and GS temperature �) come into play.
Fig. 4 illustrates the relations between relaxed and discrete
samples from a categorical distribution, and shows how
both temperatures relate.

Eq. (9) in Section 4.1.1 showed that sampling from a tem-
pered categorical can also be achieved by scaling the

Gumbel noise in the Gumbel-max trick. From track B ! E
in Fig. 4 we now see that relaxing this approach with the GS
distribution, e.g., done by [163], causes an interaction effect
between � and T , yielding a GS distribution with tempera-
ture �=T .

Instead of tuning the Boltzmann temperature to deal with
the diversity-quality dilemma in the context of discrete
GANs, the authors of [58] leverage the GS temperature �
instead. Reasoning is as follows; a high GS temperature �
(low inverse temperature in their work), introduces a high
bias in the GS gradient estimator. In order to (partly)mitigate
this bias, the GAN’s generator will implicitly be pushed
towards predicting a sharp distribution (i.e., a distribution
with a low implicit Boltzmann temperature T ). Following
this reasoning, a high � would thus encourage low T , i.e.,
exploitation, while a low � encourages exploration (large T ),
thanks to the implicit regulation of the generator.

6.5 Sampled versus Noise-Free Inference

After having trained a discrete model with the (ST-)GS esti-
mator or variants thereof, inference can be run in two dis-
tinct ways. Samples could either be drawn from the trained
categorical, or the class with the highest probability can
directly be selected (which is equal to the Gumbel-max trick
on logits without Gumbel perturbations). The chosen strat-
egy has not always been reported, but when reported
mostly noise-free inference was used. Given that sampled
inference does not require adjusted code for inference, we
assume that when not reported, inference is typically done
via sampling. Though, if sampling then takes place with the
value for � at which training ended, this sampled inference
still approaches noise-free inference in case � was annealed
to a low value during training [87].

In the context of NAS, the inference strategy was much
more often reported than in other applications, and it was
always noise-free [80], [82], [86], [88], [96]. Given the applica-
tion, this seems a logical choice, as the final goal is typically to
prune a neural network, while remaining with the best ele-
ments of the model (indicated by the classes with the highest
probabilities), rather than to sample a model architecture.
Also in the context of (hard) attention, some authors have
reported noise-free inference [37], [49]. The choice for noisy
versus noise-free inference thus typically depends on the
application. When for example the goal is to train a (discrete)
generative model, it seems evident to sample from the trained
distribution, rather than to use noise-free inference.

The authors of [86] observe boosted inference results for
ensembled predictions from sampling multiple times from
the trained distribution over channel-gates. The same
authors interestingly remark that during test time, the prob-
abilistic gates could also be replaced by deterministic gates
that are all ’on’, in which the ST-GS estimator only serves as
a (learned) regularizer during training. This view seems
analogous to the way (non-learned) dropout is used as a
regularization technique in neural network optimization.

7 SUMMARY & FUTURE PERSPECTIVES

This review provides an overview of extensions and appli-
cations of the Gumbel-max trick in machine learning. The
Gumbel-max trick [4] is a method to draw an exact sample
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from an unnormalized categorical distribution. It was
reviewed in Section 4.1, and depicted in Figs. 4 and 5. The
Gumbel-max trick closely links to well-known Poisson pro-
cesses, and weighted reservoir sampling, as discussed in
Section 4.1.2. Fig. 3 outlines the equivalences between these
three concepts.

Currently, several extensions of the Gumbel-max trick
have been proposed in the literature to create extended sam-
pling algorithms, e.g., to sample from structured models.
These algorithms were discussed in Section 4.3, and visually
related in Fig. 6. The Gumbel-max trick gained much popu-
larity thanks to a proposed relaxation based on the Gumbel-
Softmax (GS) distribution [5], [6] (see Section 5.1), that ena-
bles error backpropagation for training deep neural net-
works. The GS estimator and further developments in
Gumbel-based gradient estimators were discussed in Sec-
tion 5.2. Applications of these estimators were discussed in
Section 3, and categorized in Fig. 2. Section 6 discussed prac-
tical considerations and commonly-made choices regarding
Gumbel-based algorithms in amachine learning context.

Future directions can be found both from the application,
as from the theoretical perspective. At the application side, a
large range of real-life problems could benefit from highly-
expressive neural networks that incorporate a form of dis-
crete stochasticity. Drug research, for example, has for years
been dominated by lab research, while investigations to
drug-drug interactions [34] and drug discovery [164] are cur-
rently moving forward with state-of-the-art machine learn-
ing models. The field of logistics is another big area that
often deals with optimization over discrete spaces, making it
suitable to exploit state-of-the-art discrete stochastic models.
Moreover, the every-growing amount of acquired data poses
challenges regarding their storage, transfer and processing.
Modern radar systems acquire up to several terabytes of
data per second, therewith saturating bandwidths and decel-
erating processing. Compression algorithms that achieve
(extremely) high compression rates are therefore desirable.
Data-driven neural compression models that perform (dis-
crete) data selection and/or compression (including quanti-
zation) have already been found useful (see Section 3), but
great advances in this field are still foreseen.

From the theoretical perspective, we may expect (even
more) efficient sampling algorithms to draw one or multiple
samples from (unnormalized) structured models. We also
observe a trend towards machine learning pipelines that
increasingly leverage more structured components. These
include layers that directly encode optimization problems
[165], [166], [167], [168] or structured latent variables [111],
[145], [157], [160] that are tailored to a specific task at hand.
We believe that the combination of discrete solvers and dif-
ferentiable models [169], [170], [171] is promising and that
the development of relaxed (Gumbel-based) gradient esti-
mators will continue to be a fruitful area of research.
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