33 research outputs found

    Evaluation of the antigen-experienced B-cell receptor repertoire in healthy children and adults

    Get PDF
    Upon antigen recognition via their B cell receptor (BR), B cells migrate to the germinal center where they undergo somatic hypermutation (SHM) to increase their affinity for the antigen, and class switch recombination (CSR) to change the effector function of the secreted antibodies. These steps are essential to create an antigen-experienced BR repertoire that efficiently protects the body against pathogens. At the same time, the BR repertoire should be selected to protect against responses to self-antigen or harmless antigens. Insights into the processes of SHM, selection, and CSR can be obtained by studying the antigen-experienced BR repertoire. Currently, a large reference data set of healthy children and adults, which ranges from neonates to the elderly, is not available. In this study, we analyzed the antigen-experienced repertoire of 38 healthy donors (HD), ranging from cord blood to 74 years old, by sequencing IGA and IGG transcripts using next generation sequencing. This resulted in a large, freely available reference data set containing 412,890 IGA and IGG transcripts. We used this data set to study mutation levels, SHM patterns, antigenic selection, and CSR from birth to elderly HD. Only small differences were observed in SHM patterns, while the mutation levels increase in early childhood and stabilize at 6 years of age at around 7%. Furthermore, comparison of the antigen-experienced repertoire with sequences from the naive immune repertoire showed that features associated with autoimmunity such as long CDR3 length and IGHV4-34 usage are reduced in the antigen-experienced repertoire. Moreover, IGA2 and IGG2 usage was increased in HD in higher age categories, while IGG1 usage was decreased. In addition, we studied clonal relationship in the different samples. Clonally related sequences were found with different subclasses. Interestingly, we found transcripts with the same CDR1-CDR3 sequence, but different subclasses. Together, these data suggest that a single antigen can provoke a B-cell response with BR of different subclasses and that, during the course of an immune response, some B cells change their isotype without acquiring additional SHM or can directly switch to different isotypes

    Repertoire sequencing of B cells elucidates the role of UNG and mismatch repair proteins in somatic hypermutation in humans

    Get PDF
    The generation of high-affinity antibodies depends on somatic hypermutation (SHM). SHM is initiated by the activation-induced cytidine deaminase (AID), which generates uracil (U) lesions in the B-cell receptor (BCR) encoding genes. Error-prone processing of U lesions creates a typical spectrum of point mutations during SHM. The aim of this study was to determine the molecular mechanism of SHM in humans; currently available knowledge is limited by the number of mutations analyzed per patient. We collected a unique cohort of 10 well-defined patients with bi-allelic mutations in genes involved in base excision repair (BER) (UNG) or mismatch repair (MMR) (MSH2, MSH6, or PMS2) and are the first to present next-generation sequencing (NGS) data of the BCR, allowing us to study SHM extensively in humans. Analysis using ARGalaxy revealed selective skewing of SHM mutation patterns specific for each genetic defect, which are in line with the five-pathway model of SHM that was recently proposed based on mice data. However, trans-species comparison revealed differences in the role of PMS2 and MSH2 in strand targeting between mice and man. In conclusion, our results indicate a role for UNG, MSH2, MSH6, and PMS2 in the generation of SHM in humans comparable to their function in mice. However, we observed differences in strand targeting between humans and mice, emphasizing the importance of studying molecular mechanisms in a human setting. The here developed method combining NGS and ARGalaxy analysis of BCR mutation data forms the basis for efficient SHM analyses of other immune deficiencies

    Long-Term Follow-Up of Newborns with 22q11 Deletion Syndrome and Low TRECs.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadBackground: Population-based neonatal screening using T-cell receptor excision circles (TRECs) identifies infants with profound T lymphopenia, as seen in cases of severe combined immunodeficiency, and in a subgroup of infants with 22q11 deletion syndrome (22q11DS). Purpose: To investigate the long-term prognostic value of low levels of TRECs in newborns with 22q11DS. Methods: Subjects with 22q11DS and low TRECs at birth (22q11Low, N=10), matched subjects with 22q11DS and normal TRECs (22q11Normal, N=10), and matched healthy controls (HC, N=10) were identified. At follow-up (median age 16 years), clinical and immunological characterizations, covering lymphocyte subsets, immunoglobulins, TRECs, T-cell receptor repertoires, and relative telomere length (RTL) measurements were performed. Results: At follow-up, the 22q11Low group had lower numbers of naïve T-helper cells, naïve T-regulatory cells, naïve cytotoxic T cells, and persistently lower TRECs compared to healthy controls. Receptor repertoires showed skewed V-gene usage for naïve T-helper cells, whereas for naïve cytotoxic T cells, shorter RTL and a trend towards higher clonality were found. Multivariate discriminant analysis revealed a clear distinction between the three groups and a skewing towards Th17 differentiation of T-helper cells, particularly in the 22q11Low individuals. Perturbations of B-cell subsets were found in both the 22q11Low and 22q11Normal group compared to the HC group, with larger proportions of naïve B cells and lower levels of memory B cells, including switched memory B cells. Conclusions: This long-term follow-up study shows that 22q11Low individuals have persistent immunologic aberrations and increased risk for immune dysregulation, indicating the necessity of lifelong monitoring. Clinical implications: This study elucidates the natural history of childhood immune function in newborns with 22q11DS and low TRECs, which may facilitate the development of programs for long-term monitoring and therapeutic choices. Keywords: 22q11.2 deletion syndrome; DiGeorge syndrome; T lymphopenia; TREC; long-term outcome; newborn screening; severe combined immunodeficiency.University of Gothenburg Regional research grant Region Halland Swedish Research Council European Commission Queen Silvia Jubilee Foundation Swedish Primary Immunodeficiency Organization Sparbanken Foundation Varberg Frimurare Barnhusdirektionen Foundation Gothenburg Medical Society Medical Faculty at Umea University Cancer Research Foundation in Northern Sweden Swedish government county councils, the ALF-agreement Umea University Vasterbottens County Counci

    Immunogenicity of anti-TNF biologic therapies for rheumatoid arthritis

    No full text
    Currently, five anti-TNF biologic agents are approved for the treatment of rheumatoid arthritis (RA): adalimumab, infliximab, etanercept, golimumab and certolizumab pegol. Formation of anti-drug antibodies (ADA) has been associated with all five agents. In the case of adalimumab and infliximab, immunogenicity is strongly linked to subtherapeutic serum drug levels and a lack of clinical response, but for the other three agents, data on immunogenicity are scarce, suggesting that further research would be valuable. Low ADA levels might not influence the efficacy of anti-TNF therapy, whereas high ADA levels impair treatment efficacy by considerably reducing unbound drug levels. Immunogenicity is not only an issue in patients treated with anti-TNF biologic agents; the immunogenicity of other therapeutic proteins, such as factor VIII and interferons, is well known and has been investigated for many years. The results of such studies suggest that investigations to determine the optimal treatment regimen (drug dosing, treatment schedule and co-medication) required to minimize the likelihood of ADA formation might be an effective and practical way to deal with the immunogenicity of anti-TNF biologic agents for R

    Using monoclonal antibodies as an international standard for the measurement of anti-adalimumab antibodies

    No full text
    Comparing studies investigating anti-drug antibody (ADA) formation is hampered by the lack of comparability between study protocols, assay formats, and standardized reference materials. In this respect, the use of an international standard would mean a major step forward. Here we compared 11 fully human monoclonal antibodies against adalimumab in two assays commonly used for ADA measurement; the bridging ELISA and the antigen binding test (ABT). Our results show non-parallel titration of the monoclonal antibodies in both assays, which we also find for polyclonal ADA sources. Moreover, we observed that the output of the bridging ELISA depends to a large degree on the affinity of the monoclonal antibody. For the ABT, results reflect a combination of affinity and avidity. This suggests that rather than reporting ADA values in nanogram per milliliter, arbitrary units may be more appropriate. Together our data highlight the difficulty of ADA standardization by identifying several pitfalls that should be taken into account when selecting a standard for ADA testin

    Neutralizing capacity of monoclonal and polyclonal anti-natalizumab antibodies: The immune response to antibody therapeutics preferentially targets the antigen-binding site

    No full text
    This study shows that the immune response towards natalizumab, an IgG4 antibody targeting alpha4-integrins, is directed towards the antigen binding site of the drug. This extends previous observations for TNF inhibitors, suggesting that antibodies towards therapeutic antibodies may be inherently neutralizin

    Antigen receptor galaxy: A user-friendly, web-based tool for analysis and visualization of T and B cell receptor repertoire data

    Get PDF
    Antigen Receptor Galaxy (ARGalaxy) is a Web-based tool for analyses and visualization of TCR and BCR sequencing data of 13 species. ARGalaxy consists of four parts: The demultiplex tool, the international ImMunoGeneTics information system (IMGT) concatenate tool, the immune repertoire pipeline, and the somatic hypermutation (SHM) and class switch recombination (CSR) pipeline. Together they allow the analysis of all different aspects of the immune repertoire. All pipelines can be run independently or combined, depending on the available data and the question of interest. The demultiplex tool allows data trimming and demultiplexing, whereas with the concatenate tool multiple IMGT/HighV-QUEST output files can be merged into a single file. The immune repertoire pipeline is an extended version of our previously published ImmunoGlobulin Galaxy (IGGalaxy) virtual machine that was developed to visualize V(D)J gene usage. It allows analysis of both BCR and TCR rearrangements, visualizes CDR3 characteristics (length and amino acid usage) and junction characteristics, and calculates the diversity of the immune repertoire. Finally, ARGalaxy includes the newly developed SHM and CSR pipeline to analyze SHM and/or CSR in BCR rearrangements. It analy

    Long-term measurement of anti-adalimumab using pH-shift-anti-idiotype antigen binding test shows predictive value and transient antibody formation

    No full text
    Therapeutic monoclonal antibodies are effective drugs for many different diseases. However, the formation of anti-drug antibodies (ADA) against a biological can result in reduced clinical response in some patients. Measurement of ADA in the presence of (high) drug levels is difficult due to drug interference in most assays, including the commonly used antigen binding test (ABT). We recently published a novel method which enables the measurement of complexed antibodies against adalimumab (an anti-TNF antibody) in the presence of drug. Here we use this pH-shift-anti-idiotype ABT (PIA) to measure anti-adalimumab antibodies (AAA) in 99 rheumatoid arthritis (RA) patients treated for up to 3 years with adalimumab. 53 out of 99 RA patients produced AAA. In 50 of these PIA positive patients, AAA could be detected within the first 28 weeks of treatment. Patients in which AAA could be detected in the PIA after 28 weeks of treatment were more prone to declining adalimumab levels ( <5 µg/ml) (p <0.01) and high AAA levels which could be detected in the ABT (p <0.05) at later time points. We observed transient AAA formation in 17/53 patients. Results show that AAA develop early in treatment. However, levels that completely neutralise the drug may be reached much later in treatment. Furthermore, the patients positive for PIA at 28 weeks have an increased chance to develop clinical non-response due to immunogenicity. In some of the patients, AAA formation is transien

    A novel method for the detection of antibodies to adalimumab in the presence of drug reveals "hidden" immunogenicity in rheumatoid arthritis patients

    No full text
    Production of anti drug antibodies (ADA) in adalimumab treated RA patients is associated with reduced serum adalimumab levels and less clinical response. However, most current assays to measure ADA are unable to detect ADA in complex with adalimumab. Thus, ADA is only measured if antibody production exceeds drug levels in the serum, meaning that ADA formation is underestimated. The aim of this study is to develop a method to detect ADA in the presence of drug. A pH-shift-anti-idiotype Antigen binding test (PIA) was used to enable ADA measurement in the presence of adalimumab. ADA-adalimumab complexes were dissociated by acid treatment and addition of excess rabbit anti-idiotype-F(ab) before neutralization. Rabbit anti-idiotype-F(ab) blocks reformation of ADA-drug complexes by competing with patient ADA for adalimumab binding. Released ADA are measured by an antigen binding test (ABT). The PIA enabled detection of ADA in the presence of large excess of adalimumab and was used to measure ADA in 30 adalimumab treated rheumatoid arthritis (RA) patients during the first 28 weeks of treatment. It revealed ADA in 21 out of 30 tested patients, while the ABT detected ADA in only 5 patients. Indicating that an immunogenic reaction towards adalimumab is present in the majority of adalimumab treated patients. (C) 2010 Elsevier B.V. All rights reserve
    corecore