47 research outputs found

    Infection with Pythium flevoense in a harbour porpoise (Phocoena phocoena) as a novel cause of dermatitis in marine mammals

    Get PDF
    The oomycete Pythium flevoense was diagnosed as the cause of dermatitis in a young adult female harbour porpoise (Phocoena phocoena) that had been trapped in a pound net in a temperate saltwater environment. Disease from Pythium sp. infection-pythiosis-is infrequently diagnosed in humans, horses, dogs, cattle, and few other mammalian species. Pythiosis is typically associated with exposure to tropical or subtropical freshwater conditions, and typically caused by Pythium insidiosum. However, until now, pythiosis has been reported in neither marine mammals nor temperate saltwater conditions, and P. flevoense is not known as a cause of pythiosis in mammals. This porpoise developed generalised dermatitis despite treatment and euthanasia was necessary. Histopathological evaluation revealed a chronic active erosive dermatitis, with intralesional hyphae morphologically consistent with a Pythium sp. PCR analysis and sequencing of affected skin matched Pythium flevoense with a 100% similarity to the reference strain. Additional diagnostics excluded other pathogens. Based on this case report, P. flevoense needs to be considered as a mammalian pathogen. Furthermore, harbour porpoises and possibly other marine mammals may be at risk of infection with P. flevoense, and pythiosis should be included in the differential diagnosis of dermatitis in marine mammals.</p

    Novel B19-like parvovirus in the brain of a harbor seal

    Get PDF
    Using random PCR in combination with next-generation sequencing, a novel parvovirus was detected in the brain of a young harbor seal (Phoca vitulina) with chronic non-suppurative meningo-encephalitis that was rehabilitated at the Seal Rehabilitation and Research Centre (SRRC) in the Netherlands. In addition, two novel viruses belonging to the family Anelloviridae were detected in the lungs of this animal. Phylogenetic analysis of the coding sequence of the novel parvovirus, tentatively called Seal parvovirus, indicated that this virus belonged to the genus Erythrovirus , to which human parvovirus B19 also belongs. Although no other seals with similar signs were rehabilitated in SRRC in recent years, a prevalence study of tissues of seals from the same area collected in the period 2008-2012 indicated that the Seal parvovirus has circulated in the

    Detection of circovirus in Foxes with Meningoencephalitis, United Kingdom, 2009–2013

    Get PDF
    A fox circovirus was identified in serum samples from foxes with unexplained neurologic signs by using viral metagenomics. Fox circovirus nucleic acid was localized in histological lesions of the cerebrum by in situ hybridization. Viruses from the family Circoviridae may have neurologic tropism more commonly than previously anticipated

    Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Tissue Distribution of the MERS-Coronavirus Receptor in Bats

    No full text
    Middle East respiratory syndrome coronavirus (MERS-CoV) has been shown to infect both humans and dromedary camels using dipeptidyl peptidase-4 (DPP4) as its receptor. The distribution of DPP4 in the respiratory tract tissues of humans and camels reflects MERS-CoV tropism. Apart from dromedary camels, insectivorous bats are suggested as another natural reservoir for MERS-like-CoVs. In order to gain insight on the tropism of these viruses in bats, we studied the DPP4 distribution in the respiratory and extra-respiratory tissues of two frugivorous bat species (Epomophorus gambianus and Rousettus aegyptiacus) and two insectivorous bat species (Pipistrellus pipistrellus and Eptesicus serotinus). In the frugivorous bats, DPP4 was present in epithelial cells of both the respiratory and the intestinal tract, similar to what has been reported for camels and humans. In the insectivorous bats, however, DPP4 expression in epithelial cells of the respiratory tract was almost absent. The preferential expression of DPP4 in the intestinal tract of insectivorous bats, suggests that transmission of MERS-like-CoVs mainly occurs via the fecal-oral route. Our results highlight differences in the distribution of DPP4 expression among MERS-CoV susceptible species, which might influence variability in virus tropism, pathogenesis and transmission route
    corecore