36 research outputs found
Transient Differentiation-State Plasticity Occurs during Acute Lymphoblastic Leukemia Initiation
Leukemia is characterized by oncogenic lesions that result in a block of differentiation, whereas phenotypic plasticity is retained. A better understanding of how these two phenomena arise during leukemogenesis in humans could help inform diagnosis and treatment strategies. Here, we leveraged the well-defined differentiation states during T-cell development to pinpoint the initiation of T-cell acute lymphoblastic leukemia (T-ALL), an aggressive form of childhood leukemia, and study the emergence of phenotypic plasticity. Single-cell whole genome sequencing of leukemic blasts was combined with multiparameter flow cytometry to couple cell identity and clonal lineages. Irrespective of genetic events, leukemia-initiating cells altered their phenotypes by differentiation and dedifferentiation. The construction of the phylogenies of individual leukemias using somatic mutations revealed that phenotypic diversity is reflected by the clonal structure of cancer. The analysis also indicated that the acquired phenotypes are heritable and stable. Together, these results demonstrate a transient period of plasticity during leukemia initiation, where phenotypic switches seem unidirectional. Significance: A method merging multicolor flow cytometry with single-cell whole genome sequencing to couple cell identity with clonal lineages uncovers differentiation-state plasticity in leukemia, reconciling blocked differentiation with phenotypic plasticity in cancer
Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer
ABSTRACT: BACKGROUND: Structural rearrangements form a major class of somatic variation in cancer genomes. Local chromosome shattering, termed chromothripsis, is a mechanism proposed to be the cause of clustered chromosomal rearrangements and was recently described to occur in a small percentage of tumors. The significance of these clusters for tumor development or metastatic spread is largely unclear. RESULTS: We used genome-wide long mate-pair sequencing and SNP array profiling to reveal that chromothripsis is a widespread phenomenon in primary colorectal cancer and metastases. We find large and small chromothripsis events in nearly every colorectal tumor sample and show that several breakpoints of chromothripsis clusters and isolated rearrangements affect cancer genes, including NOTCH2, EXO1 and MLL3. We complemented the structural variation studies by sequencing the coding regions of a cancer exome in all colorectal tumor samples and found somatic mutations in 24 genes, including APC, KRAS, SMAD4 and PIK3CA. A pairwise comparison of somatic variations in primary and metastatic samples indicated that many chromothripsis clusters, isolated rearrangements and point mutations are exclusively present in either the primary tumor or the metastasis and may affect cancer genes in a lesion-specific manner. CONCLUSIONS: We conclude that chromothripsis is a prevalent mechanism driving structural rearrangements in colorectal cancer and show that a complex interplay between point mutations, simple copy number changes and chromothripsis events drive colorectal tumor development and metastasis.
MutationalPatterns: the one stop shop for the analysis of mutational processes
BACKGROUND: The collective of somatic mutations in a genome represents a record of mutational processes that have been operative in a cell. These processes can be investigated by extracting relevant mutational patterns from sequencing data. RESULTS: Here, we present the next version of MutationalPatterns, an R/Bioconductor package, which allows in-depth mutational analysis of catalogues of single and double base substitutions as well as small insertions and deletions. Major features of the package include the possibility to perform regional mutation spectra analyses and the possibility to detect strand asymmetry phenomena, such as lesion segregation. On top of this, the package also contains functions to determine how likely it is that a signature can cause damaging mutations (i.e., mutations that affect protein function). This updated package supports stricter signature refitting on known signatures in order to prevent overfitting. Using simulated mutation matrices containing varied signature contributions, we showed that reliable refitting can be achieved even when only 50 mutations are present per signature. Additionally, we incorporated bootstrapped signature refitting to assess the robustness of the signature analyses. Finally, we applied the package on genome mutation data of cell lines in which we deleted specific DNA repair processes and on large cancer datasets, to show how the package can be used to generate novel biological insights. CONCLUSIONS: This novel version of MutationalPatterns allows for more comprehensive analyses and visualization of mutational patterns in order to study the underlying processes. Ultimately, in-depth mutational analyses may contribute to improved biological insights in mechanisms of mutation accumulation as well as aid cancer diagnostics. MutationalPatterns is freely available at http://bioconductor.org/packages/MutationalPatterns
Comprehensive single-cell genome analysis at nucleotide resolution using the PTA Analysis Toolbox
Detection of somatic mutations in single cells has been severely hampered by technical limitations of whole-genome amplification. Novel technologies including primary template-directed amplification (PTA) significantly improved the accuracy of single-cell whole-genome sequencing (WGS) but still generate hundreds of artifacts per amplification reaction. We developed a comprehensive bioinformatic workflow, called the PTA Analysis Toolbox (PTATO), to accurately detect single base substitutions, insertions-deletions (indels), and structural variants in PTA-based WGS data. PTATO includes a machine learning approach and filtering based on recurrence to distinguish PTA artifacts from true mutations with high sensitivity (up to 90%), outperforming existing bioinformatic approaches. Using PTATO, we demonstrate that hematopoietic stem cells of patients with Fanconi anemia, which cannot be analyzed using regular WGS, have normal somatic single base substitution burdens but increased numbers of deletions. Our results show that PTATO enables studying somatic mutagenesis in the genomes of single cells with unprecedented sensitivity and accuracy.</p
Reconstructing single-cell karyotype alterations in colorectal cancer identifies punctuated and gradual diversification patterns
Central to tumor evolution is the generation of genetic diversity. However, the extent and patterns by which de novo karyotype alterations emerge and propagate within human tumors are not well understood, especially at single-cell resolution. Here, we present 3D Live-Seq—a protocol that integrates live-cell imaging of tumor organoid outgrowth and whole-genome sequencing of each imaged cell to reconstruct evolving tumor cell karyotypes across consecutive cell generations. Using patient-derived colorectal cancer organoids and fresh tumor biopsies, we demonstrate that karyotype alterations of varying complexity are prevalent and can arise within a few cell generations. Sub-chromosomal acentric fragments were prone to replication and collective missegregation across consecutive cell divisions. In contrast, gross genome-wide karyotype alterations were generated in a single erroneous cell division, providing support that aneuploid tumor genomes can evolve via punctuated evolution. Mapping the temporal dynamics and patterns of karyotype diversification in cancer enables reconstructions of evolutionary paths to malignant fitness
Mitochondrial H2O2 release does not directly cause damage to chromosomal DNA.
Reactive Oxygen Species (ROS) derived from mitochondrial respiration are frequently cited as a major source of chromosomal DNA mutations that contribute to cancer development and aging. However, experimental evidence showing that ROS released by mitochondria can directly damage nuclear DNA is largely lacking. In this study, we investigated the effects of H 2O 2 released by mitochondria or produced at the nucleosomes using a titratable chemogenetic approach. This enabled us to precisely investigate to what extent DNA damage occurs downstream of near- and supraphysiological amounts of localized H 2O 2. Nuclear H 2O 2 gives rise to DNA damage and mutations and a subsequent p53 dependent cell cycle arrest. Mitochondrial H 2O 2 release shows none of these effects, even at levels that are orders of magnitude higher than what mitochondria normally produce. We conclude that H 2O 2 released from mitochondria is unlikely to directly damage nuclear genomic DNA, limiting its contribution to oncogenic transformation and aging
Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease
The structural maintenance of chromosomes (SMC) family of proteins supports mitotic proliferation, meiosis, and DNA repair to control genomic stability. Impairments in chromosome maintenance are linked to rare chromosome breakage disorders. Here, we have identified a chromosome breakage syndrome associated with severe lung disease in early childhood. Four children from two unrelated kindreds died of severe pulmonary disease during infancy following viral pneumonia with evidence of combined T and B cell immunodeficiency. Whole exome sequencing revealed biallelic missense mutations in the NSMCE3 (also known as NDNL2) gene, which encodes a subunit of the SMC5/6 complex that is essential for DNA damage response and chromosome segregation. The NSMCE3 mutations disrupted interactions within the SMC5/6 complex, leading to destabilization of the complex. Patient cells showed chromosome rearrangements, micronuclei, sensitivity to replication stress and DNA damage, and defective homologous recombination. This work associates missense mutations in NSMCE3 with an autosomal recessive chromosome breakage syndrome that leads to defective T and B cell function and acute respiratory distress syndrome in early childhood
A multi-platform reference for somatic structural variation detection
Accurate detection of somatic structural variation (SV) in cancer genomes remains a challenging problem. This is in part due to the lack of high-quality, gold-standard datasets that enable the benchmarking of experimental approaches and bioinformatic analysis pipelines. Here, we performed somatic SV analysis of the paired melanoma and normal lymphoblastoid COLO829 cell lines using four different sequencing technologies. Based on the evidence from multiple technologies combined with extensive experimental validation, we compiled a comprehensive set of carefully curated and validated somatic SVs, comprising all SV types. We demonstrate the utility of this resource by determining the SV detection performance as a function of tumor purity and sequence depth, highlighting the importance of assessing these parameters in cancer genomics projects. The truth somatic SV dataset as well as the underlying raw multi-platform sequencing data are freely available and are an important resource for community somatic benchmarking efforts
Comprehensive single-cell genome analysis at nucleotide resolution using the PTA Analysis Toolbox
Detection of somatic mutations in single cells has been severely hampered by technical limitations of whole-genome amplification. Novel technologies including primary template-directed amplification (PTA) significantly improved the accuracy of single-cell whole-genome sequencing (WGS) but still generate hundreds of artifacts per amplification reaction. We developed a comprehensive bioinformatic workflow, called the PTA Analysis Toolbox (PTATO), to accurately detect single base substitutions, insertions-deletions (indels), and structural variants in PTA-based WGS data. PTATO includes a machine learning approach and filtering based on recurrence to distinguish PTA artifacts from true mutations with high sensitivity (up to 90%), outperforming existing bioinformatic approaches. Using PTATO, we demonstrate that hematopoietic stem cells of patients with Fanconi anemia, which cannot be analyzed using regular WGS, have normal somatic single base substitution burdens but increased numbers of deletions. Our results show that PTATO enables studying somatic mutagenesis in the genomes of single cells with unprecedented sensitivity and accuracy
A systematic analysis of oncogenic gene fusions in primary colon cancer
Genomic rearrangements that give rise to oncogenic gene fusions can offer actionable targets for cancer therapy. Here we present a systematic analysis of oncogenic gene fusions among a clinically well-characterized, prospectively collected set of 278 primary colon cancers spanning diverse tumor stages and clinical outcomes. Gene fusions and somatic genetic variations were identified in fresh frozen clinical specimens by Illumina RNA-sequencing, the STAR fusion gene detection pipeline, and GATK RNA-seq variant calling. We considered gene fusions to be pathogenically relevant when recurrent, producing divergent gene expression (outlier analysis), or as functionally important (e.g., kinase fusions). Overall, 2.5% of all specimens were defined as harboring a relevant gene fusion (kinase fusions 1.8%). Novel configurations of BRAF, NTRK3, and RET gene fusions resulting from chromosomal translocations were identified. An R-spondin fusion was found in only one tumor (0.35%), much less than an earlier reported frequency of 10% in colorectal cancers. We also found a novel fusion involving USP9X-ERAS formed by chromothripsis and leading to high expression of ERAS, a constitutively active RAS protein normally expressed only in embryonic stem cells. This USP9X–ERAS fusion appeared highly oncogenic on the basis of its ability to activate AKT signaling. Oncogenic fusions were identified only in lymph node–negative tumors that lacked BRAF or KRAS mutations. In summary, we identified several novel oncogenic gene fusions in colorectal cancer that may drive malignant development and offer new targets for personalized therapy