6 research outputs found
Marginal increase of sunitinib exposure by grapefruit juice
Clinical Oncolog
Explaining variability in ciclosporin exposure in adult kidney transplant recipients
International audienc
Druggable growth dependencies and tumor evolution analysis in patient-derived organoids of neuroendocrine neoplasms from multiple body sites
Neuroendocrine neoplasms (NENs) comprise well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Treatment options for patients with NENs are limited, in part due to lack of accurate models. We establish patient-derived tumor organoids (PDTOs) from pulmonary NETs and derive PDTOs from an understudied subtype of NEC, large cell neuroendocrine carcinoma (LCNEC), arising from multiple body sites. PDTOs maintain the gene expression patterns, intra-tumoral heterogeneity, and evolutionary processes of parental tumors. Through hypothesis-driven drug sensitivity analyses, we identify ASCL1 as a potential biomarker for response of LCNEC to treatment with BCL-2 inhibitors. Additionally, we discover a dependency on EGF in pulmonary NET PDTOs. Consistent with these findings, we find that, in an independent cohort, approximately 50% of pulmonary NETs express EGFR. This study identifies an actionable vulnerability for a subset of pulmonary NETs, emphasizing the utility of these PDTO models
Anomer-Equilibrated Streptozotocin Solution for the Induction of Experimental Diabetes in Mice (Mus musculus)
Streptozotocin is widely used to induce diabetes in laboratory animals through multiple low-dose or single high-dose intraperitoneal injections. HPLC analysis has shown that the composition of the solution may change considerably during the first 2 h after dissolution due to equilibration of the 2 anomers (α and β) of streptozotocin. Because of the drug's alleged instability in solution, the typical recommendation is to administer streptozotocin within 10 min after dissolution. We compared the induction of diabetes in NOD/SCID mice by injection of a single high dose of freshly made or anomer-equilibrated streptozotocin solution. Solutions were prepared from dry compound containing 85% of the α anomer, which is the more toxic of the 2. Body weight and nonfasting blood glucose levels were measured weekly for 8 wk. Both solutions induced long-term hyperglycemia, but blood glucose levels and mortality were higher and damage to pancreatic islands more pronounced in the mice receiving freshly prepared solution. A small proportion of mice did not respond in both treatment groups. If stored at 4 °C in the dark, the anomer-equilibrated solution retains its biologic activity for at least 40 d; under those conditions the streptozotocin content decreases by 0.1% daily, as determined by HPLC. Anomer-equilibrated streptozotocin solution has several practical advantages, and we recommend its use as standard for the induction of experimental diabetes because this practice may improve reproducibility and comparison of results between different laboratories
Druggable growth dependencies and tumor evolution analysis in patient-derived organoids of neuroendocrine neoplasms from multiple body sites
Neuroendocrine neoplasms (NENs) comprise well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Treatment options for patients with NENs are limited, in part due to lack of accurate models. We establish patient-derived tumor organoids (PDTOs) from pulmonary NETs and derive PDTOs from an understudied subtype of NEC, large cell neuroendocrine carcinoma (LCNEC), arising from multiple body sites. PDTOs maintain the gene expression patterns, intra-tumoral heterogeneity, and evolutionary processes of parental tumors. Through hypothesis-driven drug sensitivity analyses, we identify ASCL1 as a potential biomarker for response of LCNEC to treatment with BCL-2 inhibitors. Additionally, we discover a dependency on EGF in pulmonary NET PDTOs. Consistent with these findings, we find that, in an independent cohort, approximately 50% of pulmonary NETs express EGFR. This study identifies an actionable vulnerability for a subset of pulmonary NETs, emphasizing the utility of these PDTO models.</p