998 research outputs found

    Positron emission tomography of tumour [18F]fluoroestradiol uptake in patients with acquired hormone-resistant metastatic breast cancer prior to oestradiol therapy

    Get PDF
    Purpose Whereas anti-oestrogen therapy is widely applied to treat oestrogen receptor (ER) positive breast cancer, paradoxically, oestrogens can also induce tumour regression. Upregulation of ER expression is a marker for oestrogen hypersensitivity. We, therefore, performed an exploratory study to evaluate positron emission tomography (PET) with the tracer 16 alpha-[F-18] fluoro-17 beta-oestradiol (F-18-FES) as potential marker to select breast cancer patients for oestradiol therapy. Methods Eligible patients had acquired endocrine-resistant metastatic breast cancer that progressed after >= 2 lines of endocrine therapy. All patients had prior ER-positive histology. Treatment consisted of oestradiol 2 mg, three times daily, orally. Patients underwent F-18-FES-PET/CT imaging at baseline. Tumour F-18-FES-uptake was quantified for a maximum of 20 lesions and expressed as maximum standardised uptake value (SUVmax). CT-scan was repeated every 3 months to evaluate treatment response. Clinical benefit was defined as time to radiologic or clinical progression >= 24 weeks. Results F-18-FES uptake, quantified for 255 lesions in 19 patients, varied greatly between lesions (median 2.8; range 0.6-24.3) and between patients (median 2.5; range 1.1-15.5). Seven (37 %) patients experienced clinical benefit of oestrogen therapy, eight progressed (PD), and four were non-evaluable due to side effects. The positive and negative predictive value PPV/NPV) of F-18-FES-PET for response to treatment were 60 % (95 % CI: 31-83 %) and 80 % (95 % CI: 38-96 %), respectively, using SUVmax >1.5. Conclusion F-18-FES-PET may aid identification of patients with acquired antihormone resistant breast cancer that are unlikely to benefit from oestradiol therapy

    Delay and Impairment in Brain Development and Function in Rat Offspring After Maternal Exposure to Methylmercury

    Get PDF
    Maternal exposure to the neurotoxin methylmercury (MeHg) has been shown to have adverse effects on neural development of the offspring in man. Little is known about the underlying mechanisms by which MeHg affects the developing brain. To explore the neurodevelopmental defects and the underlying mechanism associated with MeHg exposure, the cerebellum and cerebrum of Wistar rat pups were analyzed by [F-18]FDG PET functional imaging, field potential analysis, and microarray gene expression profiling. Female rat pups were exposed to MeHg via maternal diet during intrauterinal and lactational period (from gestational day 6 to postnatal day (PND)10), and their brain tissues were sampled for the analysis at weaning (PND18-21) and adulthood (PND61-70). The [F-18]FDG PET imaging and field potential analysis suggested a delay in brain activity and impaired neural function by MeHg. Genome-wide transcriptome analysis substantiated these findings by showing (1) a delay in the onset of gene expression related to neural development, and (2) alterations in pathways related to both structural and functional aspects of nervous system development. The latter included changes in gene expression of developmental regulators, developmental phase associated genes, small GTPase signaling molecules, and representatives of all processes required for synaptic transmission. These findings were observed at dose levels at which only marginal changes in conventional developmental toxicity endpoints were detected. Therefore, the approaches applied in this study are promising in terms of yielding increased sensitivity compared with classical developmental toxicity tests

    In vivo evaluation of [F-18]FEAnGA-Me:a PET tracer for imaging beta-glucuronidase (beta-GUS) activity in a tumor/inflammation rodent model

    Get PDF
    Introduction: The PET tracer, 1-O-(4-(2-fluoroethyl-carbamoyloxymethyl)-2-nitrophenyl)-O-beta-D-glucopyronuronate ([F-18]FEAnGA), was recently developed for PET imaging of extracellularl beta-glucuronidase (beta-GUS). However,[F-18]FEAnGA exhibited rapid renal clearance, which resulted in a relatively low tracer uptake in the tumor. To improve the pharmacokinetics of [F-18]FEAnGA, we developed its more lipophilic methyl ester analog, [F-18]FEAnGA-Me. Methods: [F-18]FEAnGA-Me was obtained by alkylation of the O-protected glucuronide methyl ester precursor with [F-18]-fluoroethylamine ([F-18]FEA), followed by removal of the acetate protecting groups with NaOMe/MeOH. The PET tracer was evaluated by in vitro and in vivo studies. Results: [F-18]FEAnGA-Me was obtained in 5%-10% overall radiochemical yield. It is 10-fold less hydrophilic than [F-18]FEAnGA and it is stable in PBS and in the presence of beta-GUS for 1 h. However, in the presence of esterase or plasma [F-18]FEAnGA-Me is converted to [F-18]FEAnGA, and subsequently converted to [F-18]FEA by beta-GUS. MicroPET studies in Wistar rats bearing a C6 glioma and a sterile inflammation showed similar uptake in tumors after injection of either [F-18]FEAnGA-Me or [F-18]FEAnGA. Both tracers had a rapid two-phase clearance of total plasma radioactivity with a half-life of 1 and 8 min. The [F-18]FEAnGA fraction generated from [F-18]FEAnGA-Me by in vivo hydrolysis had a circulation half-life of 1 and 11 min in plasma. Similar distribution volume in the viable part of the tumor was found after injection of either [F-18]FEAnGA-Me or [F-18]FEAnGA. Conclusion: The imaging properties of [F-18]FEAnGA-Me were not significantly better than those of [F-18]FEAnGA. Therefore, other strategies should be applied in order to improve the kinetics of these tracers. (C) 2012 Elsevier Inc. All rights reserved

    PET imaging of the anticancer drug candidate [11C]trimebutine in a rat glioma model.

    Get PDF
    PURPOSE: Preclinical studies suggest that trimebutine could be a potential treatment for glioblastoma. The aim of this study was to investigate the distribution, kinetics and tumor accumulation of [ 11C]trimebutine. METHOD: A proliferation assay and cell scratch healing assay were performed to confirm the antitumor effects of trimebutine on C6 glioma cells in-vitro. Trimebutine was subsequently labeled with 11C. The distribution and kinetics of [ 11C]trimebutine in health rats and rats with an orthotopic C6 glioma were evaluated by ex-vivo gamma counting and positron emission tomography, respectively. Blocking experiments with an excess of unlabeled trimebutine or the μ-opioid receptor ligand cyprodime were employed to determine if trimebutine exhibits saturable binding in the brain. In addition, plasma stability of the tracer was assessed. RESULTS: The proliferation assay and cell scratch healing assay confirmed that trimebutine has anti-tumor effects in-vitro. [ 11C]Trimebutine with a radiochemical purity &gt;98 % was synthesized in 15 ± 5 % radiochemical yield. In peripheral organs, the highest accumulation of the tracer was detected in excretion organs. In the brain, the highest tracer uptake was observed in the brainstem and the lowest in the hypothalamus, although differences between regions were small. PET imaging showed rapid brain uptake of [ 11C]trimebutine, followed by a gradual washout. Administration of an intravenous dose of trimebutine (10 mg/kg) significantly decreased the uptake in all brain regions (p &lt; 0.05), except midbrain. Likewise, administration of cyprodime (2 mg/kg) significantly reduced [ 11C]trimebutine uptake in the brain (p &lt; 0.01). However, uptake of [ 11C]trimebutine in the tumor was not significantly different from its brain uptake in rats bearing an orthotopic C6 glioma. The percentage of intact [ 11C]trimebutine at 60 min post injection was only 1.7 ± 0.6 %. CONCLUSION: Trimebutine exhibits inhibitory effects on the growth and migration of glioma cells in a dose- and time-dependent manner. [ 11C]Trimebutine was able to penetrate the blood-brain barrier in rats and tracer uptake could be significantly reduced by administration of a μ-opioid receptor antagonist. However, [ 11C]trimebutine failed to selectively accumulate in orthotopic C6 glioma, which could be caused by low expression levels of the drug target in these tumors, or by fast metabolism of the tracer. </p

    Dopamine D-2 up-regulation in psychosis patients after antipsychotic drug treatment

    Get PDF
    Purpose of reviewRecently, it has been questioned whether the re-emergence of psychotic symptoms following antipsychotic discontinuation or dose reduction is attributable to underlying psychotic vulnerability or to rebound effects of chronic use of antipsychotic medication. It was repeatedly shown that relapse rates are high after discontinuation of maintenance treatment. A potential contributing factor could be the increase in density of postsynaptic dopamine D2 receptors in the striatum and the higher affinity of D2 receptors for dopamine after chronic blockade.Recent findingsTo date, little clinical evidence is available for the mechanisms involved in postsynaptic striatal D2 receptor up-regulation after use of antipsychotic medication, and most knowledge comes from animal studies.SummaryFurther research is needed to investigate whether antipsychotic medication causes neuroadaptations leading to a dopamine supersensitive state in humans, how long such hypersensitive states may last and what differences exist between high and low D2 affinity antipsychotic drugs. Further, information is needed on discontinuation schedules that provide optimal protection for relapse during hypersensitive periods

    The dual hit hypothesis of schizophrenia:evidence from animal models

    Get PDF
    Schizophrenia is a heterogeneous psychiatric disorder, which can severely impact social and professional functioning. Epidemiological and clinical studies show that schizophrenia has a multifactorial aetiology comprising genetic and environmental risk factors. Although several risk factors have been identified, it is still not clear how they result in schizophrenia. This knowledge gap, however, can be investigated in animal studies. In this review, we summarise animal studies regarding molecular and cellular mechanisms through which genetic and environmental factors may affect brain development, ultimately causing schizophrenia. Preclinical studies suggest that early environmental risk factors can affect the immune, GABAergic, glutamatergic, or dopaminergic system and thus increase the susceptibility to another risk factor later in life. A second insult, like social isolation, stress, or drug abuse, can further disrupt these systems and the interactions between them, leading to behavioural abnormalities. Surprisingly, first insults like maternal infection and early maternal separation can also have protective effects. Single gene mutations associated with schizophrenia did not have a major impact on the susceptibility to subsequent environmental hits

    Evaluation of [C-11]rofecoxib as PET tracer for cyclooxygenase 2 overexpression in rat models of inflammation

    Get PDF
    Background: Overexpression of cyclooxygenase type 2 (COX-2) is triggered by inflammatory stimuli, but it also plays a prominent role in the initiation and progression of various diseases. This study aims to investigate [C-11]rofecoxib as a positron emission tomography (PET) tracer for COX-2 expression.Methods: [C-11]Rofecoxib was prepared by methylation of its sulphinate precursor. Regional brain distribution and specific binding of [C-11] rofecoxib in healthy rats was studied by ex vivo biodistribution and autoradiography. Regional brain distribution and PET imaging studies were also performed on rats with severe encephalitis, caused by nasal infection with herpes simplex virus (HSV). Finally, ex vivo biodistribution and blocking studies were carried in rats with a sterile inflammation, induced by intramuscular turpentine injection.Results: [C-11]rofecoxib brain uptake in control animals corresponded with the known distribution of COX-2. Pretreatment with NS398 significantly reduced tracer uptake in the cingulate/frontopolar cortex, whereas the reduction in hippocampus approached significance. Ex vivo autoradiography also revealed preferential tracer uptake in hippocampus and cortical areas that could be blocked by NS398. In HSV-infected animals, [C-11]rofecoxib uptake was moderately increased in all brain regions, but it could not be blocked with indomethacin. Yet, some PET images revealed increased tracer uptake in brain areas with microglia activation. In turpentine-injected animals, [C-11]rofecoxib uptake in inflamed muscle was not higher than in control muscle and could not be blocked with NS398. Indomethacin caused a slight reduction in muscle uptake.Conclusions: Despite the apparent correlation between [C-11]rofecoxib uptake and COX-2 distribution in healthy rats, [C-11]rofecoxib could not unambiguously detect COX-2 overexpression in two rat models of inflammation. (C) 2008 Elsevier Inc. All rights reserved.</p

    Pharmacokinetic and Pharmacodynamic Studies of Elacestrant, A Novel Oral Selective Estrogen Receptor Degrader, in Healthy Post-Menopausal Women

    Get PDF
    BACKGROUND AND OBJECTIVES: Advanced estrogen receptor-positive (ER+) breast cancer is currently treated with endocrine therapy. Elacestrant is a novel, nonsteroidal, selective estrogen receptor degrader with complex dose-related ER agonist/antagonist activity that is being developed as a treatment option for ER+ breast cancer. METHODS: Two first-in-human phase 1 studies of elacestrant in healthy postmenopausal women (Study 001/Study 004) were conducted to determine its pharmacokinetic and pharmacodynamic profile as well as its safety and maximum tolerated dose. RESULTS: In total, 140 postmenopausal subjects received at least one dose of study drug (114 received elacestrant and 26 received placebo). Single-ascending dose and multiple-ascending dose assessments showed that doses up to 1000 mg daily were safe and well tolerated, and the maximum tolerated dose was not reached. Oral administration of elacestrant had an absolute bioavailability of 10% and a mean half-life ranging from 27 to 47 h, reaching steady state after 5-6 days. Mean occupancy of the ER in the uterus after seven daily doses was 83% for 200 mg and 92% for 500 mg daily. The median ratio of elacestrant concentrations in the cerebral spinal fluid vs. plasma was 0.126% (500 mg dose) and 0.205% (200 mg dose). Most adverse events were related to the upper gastrointestinal tract. CONCLUSIONS: These data demonstrate that elacestrant has good bioavailability when administered orally with a half-life that supports once-daily administration. Engagement of the ER and some ability to cross the blood-brain barrier was demonstrated in addition to an acceptable safety profile
    corecore