5 research outputs found
Avaliação da confiabilidade preventiva de sistemas elétricos de grande porte utilizando redes neurais
The well-being analysis was recently proposed as a new framework to measure the
degree of adequacy of power systems, which has as the main objective the
incorporation of deterministic criteria into the reliability analysis process. The
conceptual basis for this framework is obtained through the classification of the
system states into three groups: healthy, marginal and at risk. For the identification of
these operation states, the system is submitted to a deterministic criterion.
In composite generation and transmission systems, the identification of a healthy or
marginal state becomes much more complex than that one used, for example, in
generation systems. Any deterministic criterion to be used must consider a list of
contingencies. In principle, for each considered operation state, it is necessary to
carry out a number of additional performance analyses equal to the number of
elements in the list. Moreover, these adequacy analyses involve load flow runs with
corrective measure optimizations. Therefore, the major difficulty found in assessing
well-being indices consists of conciliating the deterministic criterion and the
combinatorial nature of the problem.
In this thesis, the evaluation of well-being indices for bulk composite generation and
transmission power systems is focused. For this purpose, the following techniques
are considered: non-sequential Monte Carlo simulation with a new test function;
interior point method for optimal power flow with reduced constraints; probabilistic
equivalent network; and incorporation of artificial neural nets in the classification of
the operation states. These techniques can provide considerable reductions in the
computational cost demanded during the classification of states. In order to verify the
proposed concepts and models, the developed methodology is applied to several test
systems, including a configuration of the Brazilian power network.A avaliação de índices de confiabilidade preventiva ou de bem-estar (well-being) foi
proposta, recentemente, como uma nova ferramenta para se determinar o grau de
adequação dos sistemas de potência, tendo como principal objetivo a incorporação
de critérios determinísticos ao processo de análise da confiabilidade. A base
conceitual para esta técnica é obtida através da classificação dos estados operativos
do sistema em três grupos: saudável, marginal e de falha. Para a identificação
destes estados, o sistema é submetido a um critério determinístico.
Em relação aos sistemas compostos de geração e transmissão, a identificação de
um estado saudável ou marginal se torna bem mais complexa que aquela utilizada,
por exemplo, em sistemas de geração. Qualquer critério determinístico a ser
empregado deve considerar uma lista de contingências. Em princípio, para cada
estado operativo considerado, é necessário realizar um número de análises
adicionais de desempenho igual ao número de elementos da lista. Acrescenta-se,
ainda, a necessidade de análises de adequação dos estados utilizando algoritmos
de fluxo de potência, com otimização de medidas corretivas. Portanto, a grande
dificuldade encontrada na avaliação de índices de bem-estar consiste em conciliar o
critério determinístico e a natureza combinatorial do problema.
Esta tese trata da avaliação de índices de bem-estar de sistemas elétricos de
potência de grande porte, compostos de geração e transmissão. Para este fim, é
proposta a utilização de técnicas como: simulação Monte Carlo não seqüencial com
uma nova função teste; modelo de fluxo de potência ótimo baseado em pontos
interiores com restrições reduzidas; equivalente probabilístico de rede; e a
incorporação de redes neurais artificiais na classificação dos estados operativos.
Tais técnicas podem propiciar reduções significativas no custo computacional
exigido durante a classificação dos estados. Para a verificação dos conceitos e
modelos propostos, a metodologia desenvolvida é aplicada em vários sistemas
testes incluindo uma configuração da rede elétrica brasileira
Avaliação da confiabilidade preventiva de sistemas de potência
The regulatory reform of the electric power industry creates an entirely new
competitive environment. In this new electricity market, the reliability of services plays
a very important role to establish non-deterministic criteria, to be applied to both
operation and expansion planning of electric power systems. The utilization of these
criteria, however, is being slowly incorporated into the decision-making processes of
most utilities. Due to the difficulties of interpreting numerical risk indices, system
operators and planners are still averse to the use of probabilistic techniques, being
more confident with the traditional deterministic criteria.
The well-being analysis has been recently proposed as a new technique to measure
the degree of adequacy of power systems, which incorporates deterministic criteria in
a probabilistic framework. The combination of the basic deterministic and probabilistic
concepts is established through the classification of the system operating states into
three categories: healthy, marginal and at risk. In order to identify these states, the
system is analyzed according to a deterministic criterion based on a pre-specified list
of equipment contingencies.
In this dissertation, a new methodology is proposed to evaluate well-being indices
considering composite generation and transmission power systems. The new
methodology uses a non-sequential Monte Carlo simulation, a non-aggregate
Markovian load model and a new process to estimate failure frequency indices,
named one step forward state transition process. New test functions are proposed to
calculate the well-being indices, including the frequency of marginal states. In order
to test the accuracy and efficiency of the proposed methodology, the IEEE Reliability
Test System with some modifications is used.O setor elétrico vem experimentando um ambiente de crescente competitividade e
desregulamentação. Neste novo mercado de energia, a confiabilidade dos serviços
prestados vem se tornando objeto de importantes discussões e recomendações que
visam a inclusão de critérios não determinísticos no processo de planejamento da
operação e expansão de sistemas elétricos de potência. No entanto, a utilização
desses critérios vem sendo lentamente incorporada pela maioria das
concessionárias. Devido à dificuldade de interpretação de índices numéricos de
risco, operadores e planejadores de sistemas ainda relutam em aplicar técnicas
probabilísticas, fazendo maior utilização dos chamados critérios determinísticos.
A avaliação da confiabilidade preventiva foi proposta recentemente como uma nova
técnica para se determinar o grau de adequação de sistemas de potência, tendo
como principal objetivo a incorporação de critérios determinísticos ao processo de
análise da confiabilidade. A base conceitual para esta técnica é obtida através da
classificação dos estados operativos do sistema em três grupos: saudável, marginal
e de falha. Para a identificação destes estados o sistema é submetido a um critério
determinístico, usualmente, baseado em uma lista de contingências préespecificadas.
Nesta dissertação é proposta uma metodologia para a avaliação da confiabilidade
preventiva de sistemas compostos de geração e transmissão. Esta metodologia
utiliza a simulação Monte Carlo não-seqüencial, um modelo de carga Markoviano
não-agregado e um novo processo de estimação índices de freqüência, denominado
processo de transição de estado um passo à frente. Novas funções testes são
propostas para a avaliação de índices de confiabilidade preventiva, como por
exemplo a freqüência dos estados marginais. Para a verificação dos conceitos
propostos, a metodologia desenvolvida é aplicada ao sistema teste IEEE-RTS e
modificações no mesmo
Composite Power System Reliability Evaluation Considering Stochastic Parameters Uncertainties
In electrical power systems, the impact of
interruptions due to failures can be reduced through expansion
planning studies. While high investments result in very expensive
and more reliable decisions, reduced investments can lead to
unreliable systems. Therefore, it is evident that economic and
reliability constraints are conflicting, which makes decision-making difficult in planning and operation stage. The reliability
theory, based on probabilities and stochastic processes, allows
modeling the random behavior of equipment to estimate
performance indices such as Loss of Load Cost. However,
parameters as equipment failure rate and repair time are subject
to random variations due to limited or nonexistent operating
histories, aging and statistical errors. This paper proposes a
technique for considering uncertainties on stochastic equipment
data in power systems expansion planning. Based on the Monte
Carlo Simulation, the proposed technique uses Interval
Arithmetic as a method for calculating uncertainty through the
theory of imprecise probabilities (P-Box). The application in a
test system and a real transmission system allows observing the
behavior of the reliability cost as well as the final cost of
alternatives for expansion of these systems with the consideration
of uncertainties along the expansion horizon
Composite Power System Reliability Evaluation Considering Stochastic Parameters Uncertainties
In electrical power systems, the impact of
interruptions due to failures can be reduced through expansion
planning studies. While high investments result in very expensive
and more reliable decisions, reduced investments can lead to
unreliable systems. Therefore, it is evident that economic and
reliability constraints are conflicting, which makes decision-making difficult in planning and operation stage. The reliability
theory, based on probabilities and stochastic processes, allows
modeling the random behavior of equipment to estimate
performance indices such as Loss of Load Cost. However,
parameters as equipment failure rate and repair time are subject
to random variations due to limited or nonexistent operating
histories, aging and statistical errors. This paper proposes a
technique for considering uncertainties on stochastic equipment
data in power systems expansion planning. Based on the Monte
Carlo Simulation, the proposed technique uses Interval
Arithmetic as a method for calculating uncertainty through the
theory of imprecise probabilities (P-Box). The application in a
test system and a real transmission system allows observing the
behavior of the reliability cost as well as the final cost of
alternatives for expansion of these systems with the consideration
of uncertainties along the expansion horizon
Composite Power System Reliability Evaluation Considering Stochastic Parameters Uncertainties
In electrical power systems, the impact of
interruptions due to failures can be reduced through expansion
planning studies. While high investments result in very expensive
and more reliable decisions, reduced investments can lead to
unreliable systems. Therefore, it is evident that economic and
reliability constraints are conflicting, which makes decision-making difficult in planning and operation stage. The reliability
theory, based on probabilities and stochastic processes, allows
modeling the random behavior of equipment to estimate
performance indices such as Loss of Load Cost. However,
parameters as equipment failure rate and repair time are subject
to random variations due to limited or nonexistent operating
histories, aging and statistical errors. This paper proposes a
technique for considering uncertainties on stochastic equipment
data in power systems expansion planning. Based on the Monte
Carlo Simulation, the proposed technique uses Interval
Arithmetic as a method for calculating uncertainty through the
theory of imprecise probabilities (P-Box). The application in a
test system and a real transmission system allows observing the
behavior of the reliability cost as well as the final cost of
alternatives for expansion of these systems with the consideration
of uncertainties along the expansion horizon