80 research outputs found

    A Bluetooth-low-energy-based detection and warning system for vulnerable road users in the blind spot of vehicles

    Get PDF
    Blind spot road accidents are a frequently occurring problem. Every year, several deaths are caused by this phenomenon, even though a lot of money is invested in raising awareness and in the development of prevention systems. In this paper, a blind spot detection and warning system is proposed, relying on Received Signal Strength Indicator (RSSI) measurements and Bluetooth Low Energy (BLE) wireless communication. The received RSSI samples are threshold-filtered, after which a weighted average is computed with a sliding window filter. The technique is validated by simulations and measurements. Finally, the strength of the proposed system is demonstrated with real-life measurements

    Eosinophilic Fasciitis: an Atypical Presentation of a Rare Disease

    Get PDF
    Objectives: We report an atypical presentation of eosinophilic fasciitis and provide a concise overview of the literature. Materials and Methods: Clinical and laboratory findings in a patient presenting with fever and skin induration were recorded. A deep muscle biopsy was performed in order to confirm the diagnosis. Results: A spontaneous favourable clinical and radiological evolution was observed. Conclusion: The diagnosis of eosinophilic fasciitis is challenging due to the lack of pathognomonic signs and symptoms. As spontaneous resolution has been described, watchful waiting is defendable depending on the clinical presentation. Although magnetic resonance imaging (MRI) can be useful in establishing the diagnosis, a deep muscle biopsy remains the gold standard diagnostic tool

    Maternal embryonic leucine zipper kinase is a novel target for diffuse large B cell lymphoma and mantle cell lymphoma

    Get PDF
    Diffuse large B cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) are among the most aggressive B cell non-Hodgkin lymphomas. Maternal embryonic leucine zipper kinase (MELK) plays a role in cancer cell cycle progression and is associated with poor prognosis in several cancer cell types. In this study, the role of MELK in DLBCL and MCL and the therapeutic potential of MELK targeting is evaluated. MELK is highly expressed in DLBCL and MCL patient samples, correlating with a worse clinical outcome in DLBCL. Targeting MELK, using the small molecule OTSSP167, impaired cell growth and survival and induced caspase-mediated apoptosis in the lymphoma cells. Western blot analysis revealed that MELK targeting decreased the phosphorylation of FOXM1 and the protein levels of EZH2 and several mitotic regulators, such as Cdc25B, cyclin B1, Plk-1, and Aurora kinases. In addition, OTSSP167 also sensitized the lymphoma cells to the clinically relevant Bcl-2 inhibitor venetoclax by strongly reducing Mcl1 levels. Finally, OTSSP167 treatment of A20-inoculated mice resulted in a significant prolonged survival. In conclusion, targeting MELK with OTSSP167 induced strong anti-lymphoma activity both in vitro and in vivo. These findings suggest that MELK could be a potential new target in these aggressive B cell malignancies

    The anaphase-promoting complex/cyclosome : a new promising target in diffuse large B-cell lymphoma and mantle cell lymphoma

    Get PDF
    BACKGROUND: The aggressive B-cell non-Hodgkin lymphomas diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) are characterised by a high proliferation rate. The anaphase-promoting complex/cyclosome (APC/C) and its co-activators Cdc20 and Cdh1 represent an important checkpoint in mitosis. Here, the role of the APC/C and its co-activators is examined in DLBCL and MCL. METHODS: The expression and prognostic value of Cdc20 and Cdh1 was investigated using GEP data and immunohistochemistry. Moreover, the therapeutic potential of APC/C targeting was evaluated using the small-molecule inhibitor proTAME and the underlying mechanisms of action were investigated by western blot. RESULTS: We demonstrated that Cdc20 is highly expressed in DLBCL and aggressive MCL, correlating with a poor prognosis in DLBCL. ProTAME induced a prolonged metaphase, resulting in accumulation of the APC/C-Cdc20 substrate cyclin B1, inactivation/degradation of Bcl-2 and Bcl-xL and caspase-dependent apoptosis. In addition, proTAME strongly enhanced the anti-lymphoma effect of the clinically relevant agents doxorubicin and venetoclax. CONCLUSION: We identified for the first time APC/C as a new, promising target in DLBCL and MCL. Moreover, we provide evidence that Cdc20 might be a novel, independent prognostic factor in DLBCL and MCL

    Primary myelofibrosis is not primary anymore since the discovery of MPL515 and CALR mutations as driver causes of mono-linear megakaryocytic and dual megakaryocytic granulocytic myeloproliferation and secondary myelofibrosis

    No full text
    Primary myelofibrosis (PMF) is a distinct clinicopathological myeloproliferatve disease (MPD) not preceded by any other MPD ET, PV, CML,... Combined use of bone marrow histology and increased erythrocyte counts above 5.8x1012/L can replace increased red cell mass at time of presentation as the pathognomonic clue for the correct diagnosis of hetero/homozygous or homozygous mutated PV. Erythrocyte counts are in the normal range below 5.8x1012/L in heterozygous JAK2V617F mutated ET and prodromal PV but above 5.8x1012/L in heterozygous-homozygous or homozygous mutated PV. The bone marrow cellularity and morphology in pre-fibrotic ET, prodromal PV and PV carrying the JAK2V617F mutation are overlapping showing clustered increase of large mature pleomorphic megakaryocytes (M) with no increase of cellularity (<60%) in ET. The bone marrow is hypercellular (60%-80%) due to increased erythropoiesis megakaryopoiesis (EM) in prodromal and classical PV and trilinear hypercellular (80%-100% due increased megakaryopoiesis, erythropoiesis and granulopoiesis (EMG) in advanced PV and masked PV. Bone marrow cellularity ranging from normal (<60%) in ET to increased erythropoiesis (EM) in prodromal PV to hypercellular (80-100%) in advanced PV and masked PV largely depends on increasing JAK2V617F mutation load from low to high on top of other biological MPN variables like constitutional symptoms during long-term follow-up. MPL515 mutated ET is featured by an increase of clustered small and giant megakaryocytes with hyper-lobulated staghorn-like nuclei in a normal cellular bone marrow. The third entity of pronounced JAK2/MPL wild type ET associated with primary megakaryocytic granulocytic myeloproliferation (PMGM) without PV features proved to be caused by calreticulin (CALR) mutation. CALR mutated thrombocythemia is characterized by dual proliferation of megakaryocytic and granulocytic bone marrow proliferation of dense clustered large to giant immature dysmorphic megakaryocytes with bulky (bulbous) hyperchromatic nuclei, which are not seen in MPL515-mutated Thrombocythemia and JAK2V617F-Thrombocythemia, prodromal PV and classical PV.&nbsp

    The PVSG/WHO versus the Rotterdam European clinical, molecular and pathological diagnostic criteria for the classification of myeloproliferative disorders and myeloproliferative neoplasms (MPD/MPN): From Dameshek to Georgii, Vainchenker and Michiels 1950-2018

    No full text
    The present article extends the PVSG-WHO criteria into a simplified set of Rotterdam and European Clinical, Molecular and Pathological (RCP/ECMP) criteria to diagnose and classify the myeloproliferative neoplasms (MPNs). The crude WHO criteria still miss the masked and early stages of ET and PV. Bone marrow histology has a near to 100% sensitivity and specificity to distinguish thrombocythemia in BCR/ABL positive CML and ET, and the myelodysplastic syndromes in RARS-T and 5q-minus syndrome from BCR/ABL negative thrombocythemias in myeloproliferative disorders (MPD). The presence of JAK2V617F mutation with increased erythrocytes above 6x1012/L and hematocrit (>0.51 males and >0.48 females) is diagnostic for PV obviating the need of red cell mass measurement. About half of WHO defined ET and PMF and 95% of PV patients are JAK2V617F positive. The combination of molecular marker screening JAK2V617F, JAK2 exon 12, MPL515 and CALR mutations and bone marrow pathology is 100% sensitive and specific for the diagnosis of latent, early and classical ECMP defined MPNs. The translation of WHO defined ET, PV and PMF into ECMP criteria have include the platelet count above 350 x109/l, mutation screening and bone marrow histology as inclusion criteria for thrombocythemia in various MPNs. According to ECMP criteria, ET comprises three distinct phenotypes of true ET, ET with features of early (“forme fruste” PV), and ET with a hypercellular erythrocythemic, megakaryocytic granulocytic myeloproliferation (EMGM or masked PV). The ECMP criteria clearly differentiate early erythrocythemic, prodromal and classical PV from congenital polycythemia and idiopathic or secondary erythrocytosis. The burden of JAK2V617F mutation in heterozygous ET and in homozygous PV is of major clinical and prognostic significance. JAK2 wild type MPL515 mutated normocellular ET and MF lack PV features in blood and bone marrow. JAK2/MPL wild type hypercellular ET associated with primary megakaryocytic granulocytic myeloproliferation (PMGM) is the third distinct CALR mutated MPN. The translation of WHO into ECMP criteria for the classification of MPNs have a major impact on prognosis assessment and best choice for first line non-leukemogenic approach to postpone potential leukemogenic myelopsuppressive agents as long as possible in ET, PV and PMGM patients
    • …
    corecore