5 research outputs found

    Modelagem estatística das internações hospitalares por pneumonia em Campo Grande

    Get PDF
    Justification and Objectives: Brazil lacks consistent epidemiological data on the respiratory morbidity of children and older adults, which makes it difficult to plan and execute effective preventive and health promotion actions. The objective of this study was to analyze the adjustments of distributions (Weibull, Normal, Gamma, Logistic) of historical series of hospitalizations for respiratory diseases (total hospitalizations), from 2011 to 2015, in Campo Grande, Mato Grosso do Sul. Methods: to determine the statistical models, four statistical indicators (coefficient of determination, mean root square error, mean absolute error and mean absolute percentage error) were performed from 2011 to 2015. Parameter estimates are obtained for the models adopted in the study, with and without a regression structure. Results: the results showed that Weibull, Gamma, Normal and Logistic distributions, applied to the series of hospitalizations for respiratory diseases in Campo Grande, were satisfactory in determining the shape and scale parameters, and the statistical indicators R2, MAE, RSME and MAPE confirmed the data goodness-of-fit, and the graphical analysis indicated a satisfactory distribution fit. Conclusion: the analysis of monthly values indicates that Gamma is the best of the four distributions based on those selected. The regression model can be adjusted to the data and used as an alternative distribution that describes the hospitalization data considered in Campo Grande, Brazil.Justificación y Objetivos: el Brasil carece de datos epidemiológicos consistentes sobre la morbilidad respiratoria de niños y ancianos, lo que dificulta la planificación y ejecución de acciones efectivas de prevención y promoción de la salud. El objetivo de este estudio fue analizar los ajustes de las distribuciones (Weibull, Normal, Gamma, Logística) de la serie histórica de hospitalizaciones por enfermedades respiratorias (hospitalizaciones totales), de 2011 a 2015, en Campo Grande, Mato Grosso do Sul. Métodos: para la determinación de los modelos estadísticos, se realizaron cuatro indicadores estadísticos (coeficiente de determinación, raíz del error cuadrático medio, error medio absoluto y error porcentual absoluto medio) de 2011 a 2015. Se obtienen estimaciones de los parámetros para los modelos adoptados en el estudio, con y sin estructura de regresión. Resultados: los resultados mostraron que las distribuciones Weibull, Gamma, Normal y Logística, aplicadas a la serie de internaciones por enfermedades respiratorias en Campo Grande, fueron satisfactorias en la determinación de los parámetros de forma y escala, y los indicadores estadísticos R2, MAE, RSME y MAPE confirmaron la calidad de ajuste de los datos, y el análisis gráfico indicaron un ajuste satisfactorio de las distribuciones. Conclusión: el análisis de los valores mensuales indica que la Gamma es la mejor de las cuatro distribuciones en base a las seleccionadas. El modelo de regresión se puede ajustar a los datos y utilizar como una distribución alternativa que describe los datos de hospitalización considerados en Campo Grande, Brasil.Justificativa e Objetivos: o Brasil carece de dados epidemiológicos consistentes sobre a morbidade respiratória de crianças e idosos, o que dificulta o planejamento e a execução de ações efetivas de prevenção e promoção da saúde. O objetivo deste estudo foi analisar os ajustes das distribuições (Weibull, Normal, Gamma, Logística) da série histórica de internações por doenças respiratórias (total de internações), no período de 2011 a 2015, em Campo Grande, Mato Grosso do Sul. Métodos: para determinar os modelos estatísticos, foram executados quatro indicadores estatísticos (coeficiente de determinação, erro quadrático médio, erro absoluto médio e erro percentual absoluto médio) de 2011 a 2015. As estimativas dos parâmetros são obtidas para os modelos adotados no estudo com e sem uma estrutura de regressão. Resultados: os resultados mostraram que as distribuições Weibull, Gamma, Normal e Logística, aplicadas à série de internações por doenças respiratórias em Campo Grande, foram satisfatórias na determinação dos parâmetros de forma e escala, e os indicadores estatísticos R2, MAE, RSME e MAPE confirmaram a qualidade do ajuste dos dados, e a análise gráfica apontou um ajuste satisfatório das distribuições. Conclusão: a análise dos valores mensais indica que a Gamma é a melhor das quatro distribuições baseadas nos selecionados. O modelo de regressão pode ser ajustado aos dados e ser usado como uma distribuição alternativa que descreve os dados de internação considerados em Campo Grande, Brasil

    Modeling of Dengue by Cluster Analysis and Probability Distribution Functions in the State of Alagoas in Brazilian

    Get PDF
    Abstract Dengue is a viral disease whose number of cases has increased in Brazil. This study aimed to characterize the spatio-temporal distribution patterns of the reported dengue infection cases in the state of Alagoas (AL), Northeastern Brazil (NEB). The data of the officially reported dengue cases from 2000 to 2015 was retrieved from the State Health Secretariat of Alagoas (SESAL), which captures national demographic and health data from the System for the Reporting of Notifiable Conditions (SINAN). After applying the Kernel Density Estimation (KDE) function, maps were generated based on the Inverse Distance Weighting (IDW) interpolation method. By using the clusters analysis (CA) technique, three homogeneous groups of dengue in AL were determined. Next, the LN (Lognormal), GUM (Gumbel) and GEV (Generalized Extreme Value) probability distributions were applied to monthly model dengue case data in AL, with the LN continuous probability distribution standing out. Maceió and Arapiraca have a higher number of dengue cases than other cities, being the main reason for their interpretation as separate groups. The coefficients of determination (R2) of dengue cases analysis as a function of month of each year for the studied years were low (between 0.03 and 0.63) and many regression slopes were not significant. Pearson's correlation coefficient (r) between dengue and the Human Development Index (HDI) of LA was considered moderate (0.53) and the correlation between dengue and demographic density was high (0.76). The importance of constant monitoring and assistance for these areas is reinforced

    Dynamics of Fire Foci in the Amazon Rainforest and Their Consequences on Environmental Degradation

    No full text
    Burns are common practices in Brazil and cause major fires, especially in the Legal Amazon. This study evaluated the dynamics of the fire foci in the Legal Amazon in Brazil and their consequences on environmental degradation, particularly in the transformation of the forest into pasture, in livestock and agriculture areas, mining activities and urbanization. The fire foci data were obtained from the reference satellites of the BDQueimadas of the CPTEC/INPE for the period June 1998–May 2022. The data obtained were subjected to descriptive and exploratory statistical analysis, followed by a comparison with the PRODES data during 2004–2021, the DETER data (2016–2019) and the ENSO phases during the ONI index for the study area. Biophysical parameters were used in the assessment of environmental degradation. The results showed that El Niño’s years of activity and the years of extreme droughts (2005, 2010 and 2015) stand out with respect to significant increase in fire foci. Moreover, the significant numbers of fire foci indices during August, September, October and November were recorded as 23.28%, 30.91%, 15.64% and 10.34%, respectively, and these were even more intensified by the El Niño episodes. Biophysical parameters maps showed the variability of the fire foci, mainly in the south and west part of the Amazon basin referring to the Arc of Deforestation. Similarly, the states of Mato Grosso, Pará and Amazonas had the highest alerts from PRODES and DETER, and in the case of DETER, primarily mining and deforestation (94.3%) increased the environmental degradation. The use of burns for agriculture and livestock, followed by mining and wood extraction, caused the degradation of the Amazon biome

    Spatiotemporal Analysis of Fire Foci and Environmental Degradation in the Biomes of Northeastern Brazil

    No full text
    Forest fires destroy productive land throughout the world. In Brazil, mainly the Northeast of Brazil (NEB) is strongly affected by forest fires and bush fires. Similarly, there is no adequate study of long-term data from ground and satellite-based estimation of fire foci in NEB. The objectives of this study are: (i) to evaluate the spatiotemporal estimation of fires in NEB biomes via environmental satellites during the long term over 1998–2018, and (ii) to characterize the environmental degradation in the NEB biomes via orbital products during 1998–2018, obtained from the Burn Database (BDQueimadas) for 1794 municipalities. The spatiotemporal variation is estimated statistically (descriptive, exploratory and multivariate statistics) from the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Standardized Precipitation Index (SPI) through the Climate Hazards Group InfraRed Precipitation Station (CHIRPS). Moreover, we identify 10 homogeneous groups of fire foci (G1–G10) with a total variance of 76.5%. The G1 group is the most extended group, along with the G2 group, the exception being the G3 group. Similarly, the G4–G10 groups have a high percentage of hotspots, with more values in the municipality of Grajaú, which belongs to the agricultural consortium. The gradient of fire foci from the coast to the interior of the NEB is directly associated with land use/land cover (LULC) changes, where the sparse vegetation category and areas without vegetation are mainly involved. The Caatinga and Cerrado biomes lose vegetation, unlike the Amazon and Atlantic Forest biomes. The fires detected in the Cerrado and Atlantic Forest biomes are the result of agricultural consortia. Additionally, the two periods 2003–2006 and 2013–2018 show periods of severe and prolonged drought due to the action of El Niño

    Spatiotemporal Analysis of Fire Foci and Environmental Degradation in the Biomes of Northeastern Brazil

    No full text
    Forest fires destroy productive land throughout the world. In Brazil, mainly the Northeast of Brazil (NEB) is strongly affected by forest fires and bush fires. Similarly, there is no adequate study of long-term data from ground and satellite-based estimation of fire foci in NEB. The objectives of this study are: (i) to evaluate the spatiotemporal estimation of fires in NEB biomes via environmental satellites during the long term over 1998–2018, and (ii) to characterize the environmental degradation in the NEB biomes via orbital products during 1998–2018, obtained from the Burn Database (BDQueimadas) for 1794 municipalities. The spatiotemporal variation is estimated statistically (descriptive, exploratory and multivariate statistics) from the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Standardized Precipitation Index (SPI) through the Climate Hazards Group InfraRed Precipitation Station (CHIRPS). Moreover, we identify 10 homogeneous groups of fire foci (G1–G10) with a total variance of 76.5%. The G1 group is the most extended group, along with the G2 group, the exception being the G3 group. Similarly, the G4–G10 groups have a high percentage of hotspots, with more values in the municipality of Grajaú, which belongs to the agricultural consortium. The gradient of fire foci from the coast to the interior of the NEB is directly associated with land use/land cover (LULC) changes, where the sparse vegetation category and areas without vegetation are mainly involved. The Caatinga and Cerrado biomes lose vegetation, unlike the Amazon and Atlantic Forest biomes. The fires detected in the Cerrado and Atlantic Forest biomes are the result of agricultural consortia. Additionally, the two periods 2003–2006 and 2013–2018 show periods of severe and prolonged drought due to the action of El Niño
    corecore