7 research outputs found
Effect of mixed convection on laminar vortex breakdown in a cylindrical enclosure with a rotating bottom plate
© 2020 Elsevier Masson SAS Vortex breakdown plays a central role in the performance of countless rotating machinery applications, many of which contain thermal gradients either inadvertently or by design. The effect of thermal gradients on vortex breakdown and further flow development in a cylindrical domain with a rotating bottom plate is examined using the Generalized Integral Transformation Technique (GITT) with a streamfunction-only formulation. A thermal gradient is imposed in the axial direction, such that the buoyancy forces oppose the base flow driven by the rotation of the lower plate, i.e. the temperature difference acts to stabilize the flow. The hybrid numerical-analytical approach is shown to accurately capture vortex breakdown phenomena for a variety of conditions involving single, double and triple recirculation bubbles. The buoyancy forces â expressed in terms of the Richardson number (Ri) â act to suppress vortex breakdown in all cases examined and led to a series of flow transitions with increasing Ri, characterized by the appearance of a stratified structure with multiple fluid layers. These flow transitions have a significant impact on the overall performance of the system. The torque coefficient decreases with Ri, compared to the base (isothermal) case following an empirical power law relationship, which is independent of Reynolds number, aspect ratio or number of fluid layers present. Flow stratification suppresses the transport of angular momentum; azimuthal velocity is shown to decline exponentially in the regions where layering occurs, accompanied by a sharp reduction in the Nusselt number, as fluid layers act to insulate the upper plate
Recommended from our members
Sensitivity of South American tropical forests to an extreme climate anomaly
Abstract:
The tropical forest carbon sink is known to be drought sensitive, but it is unclear which forests are the most vulnerable to extreme events. Forests with hotter and drier baseline conditions may be protected by prior adaptation, or more vulnerable because they operate closer to physiological limits. Here we report that forests in drier South American climates experienced the greatest impacts of the 2015â2016 El Niño, indicating greater vulnerability to extreme temperatures and drought. The long-term, ground-measured tree-by-tree responses of 123 forest plots across tropical South America show that the biomass carbon sink ceased during the event with carbon balance becoming indistinguishable from zero (â0.02â±â0.37âMgâCâhaâ1 per year). However, intact tropical South American forests overall were no more sensitive to the extreme 2015â2016 El Niño than to previous less intense events, remaining a key defence against climate change as long as they are protected
Recommended from our members
Sensitivity of South American tropical forests to an extreme climate anomaly
Funder: A Moore Foundation grant, Royal Society Global Challenges grant (Sensitivity of Tropical Forest Ecosystem Services to Climate Changes), CNPq grants (441282/2016-4, 403764/2012-2 and 558244/2009-2), FAPEAM grants 1600/2006, 465/2010 and PPFOR 147/2015, CNPq grants 473308/2009-6 and 558320/2009-0. European Research Council (ERC Advanced Grant 291585 - 'T-FORCES'), the Gordon and Betty Moore Foundation (#1656 'RAINFOR', and 'MonANPeru'), the European Union's Fifth, Sixth and Seventh Framework Programme (EVK2-CT-1999-00023 - 'CARBONSINK-LBA', 283080 - 'GEOCARBON', 282664 - 'AMAZALERT), the Natural Environment Research Council (NE/ D005590/1 - 'TROBIT', NE/F005806/1 - 'AMAZONICA', E/M0022021/1 - 'PPFOR'), several NERC Urgency and New Investigators Grants, the NERC/State of Sao Paulo Research Foundation (FAPESP) consortium grants 'BIO-RED' (NE/N012542/1), 'ECOFOR' (NE/K016431/1, 2012/51872-5, 2012/51509-8), 'ARBOLES' (NE/S011811/1, FAPESP 2018/15001-6), 'SEOSAW' (NE/P008755/1), 'SECO' (NE/T01279X/1), Brazilian National Research Council (PELD/CNPq 403710/2012-0), the Royal Society (University Research Fellowships and Global challenges Awards) (ICA/R1/180100 - 'FORAMA'), the National Geographic Society, US National Science Foundation (DEB 1754647) and Colombia's Colciencias. We thank the National Council for Science and Technology Development of Brazil (CNPq) for support to the Cerrado/Amazonia Transition Long-Term Ecology Project (PELD/441244/2016-5), the PPBio Phytogeography of Amazonia/Cerrado Transition Project (CNPq/PPBio/457602/2012-0), PELD-RAS (CNPq, Process 441659/2016-0), RESFLORA (Process 420254/2018-8), Synergize (Process 442354/2019-3), the Empresa Brasileira de Pesquisa Agropecuaria - Embrapa (SEG: 02.08.06.005.00), the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP (2012/51509-8 and 2012/51872-5), the Goias Research Foundation (FAPEG/PELD: 2017/10267000329) the EcoSpace Project (CNPq 459941/2014-3) and several PVE and Productivity Grants. We also thank the "Investissement d'Avenir" program (CEBA, ref. ANR-10LABX-25-01), the Sao Paulo Research Foundation (FAPESP 03/12595-7) and the Sustainable Landscapes Brazil Project (through Brazilian Agricultural Research Corporation (EMBRAPA), the US Forest Service, USAID, and the US Department of State) for supporting plot inventories in the Atlantic Forest sites in Sao Paulo, Brazil. L.E.O.C.A. was supported by CNPq (processes 305054/2016-3 and 442371/2019-5). We thank to the National Council for Technological and Scientific Development (CNPq) for the financial support of the PELD project (441244/2016-5, 441572/2020-0) and FAPEMAT (0346321/2021). NE/B503384/1, NE/N012542/1 - 'BIO-RED', ERC Advanced Grant 291585 - 'T-FORCES', NE/F005806/1 - 'AMAZONICA', NE/N004655/1 - 'TREMOR', NERC New Investigators Awards, the Gordon and Betty Moore Foundation ('RAINFOR', 'MonANPeru'), ERC Starter Grant 758873 -'TreeMort', EU Framework 6, a Royal Society University Research Fellowship, and a Leverhulme Trust Research Fellowship.AbstractThe tropical forest carbon sink is known to be drought sensitive, but it is unclear which forests are the most vulnerable to extreme events. Forests with hotter and drier baseline conditions may be protected by prior adaptation, or more vulnerable because they operate closer to physiological limits. Here we report that forests in drier South American climates experienced the greatest impacts of the 2015â2016 El Niño, indicating greater vulnerability to extreme temperatures and drought. The long-term, ground-measured tree-by-tree responses of 123 forest plots across tropical South America show that the biomass carbon sink ceased during the event with carbon balance becoming indistinguishable from zero (â0.02â±â0.37âMgâCâhaâ1 per year). However, intact tropical South American forests overall were no more sensitive to the extreme 2015â2016 El Niño than to previous less intense events, remaining a key defence against climate change as long as they are protected.</jats:p
Global consortium for the classification of fungi and fungus-like taxa
International audienc