3,307 research outputs found

    Partial Stability Concept in Extremum Seeking Problems

    No full text
    The paper deals with the extremum seeking problem for a class of cost functions depending only on a part of state variables of a control system. This problem is related to the concept of partial asymptotic stability and analyzed by Lyapunov's direct method and averaging schemes. Sufficient conditions for the practical partial stability of a system with oscillating inputs are derived with the use of Lie bracket approximation techniques. These conditions are exploited to describe a broad class of extremum-seeking controllers ensuring the partial stability of the set of minima of a cost function. The obtained theoretical results are illustrated by the Brockett integrator and rotating rigid body.Comment: This is the author's version of the manuscript accepted for publication in the Proceedings of the Joint 8th IFAC Symposium on Mechatronic Systems and 11th IFAC Symposium on Nonlinear Control Systems (MECHATRONICS & NOLCOS 2019

    Exponential Stabilization of Nonholonomic Systems by Means of Oscillating Controls

    No full text
    This paper is devoted to the stabilization problem for nonlinear driftless control systems by means of a time-varying feedback control. It is assumed that the vector fields of the system together with their first order Lie brackets span the whole tangent space at the equilibrium. A family of trigonometric open-loop controls is constructed to approximate the gradient flow associated with a Lyapunov function. These controls are applied for the derivation of a time-varying feedback law under the sampling strategy. By using Lyapunov's direct method, we prove that the controller proposed ensures exponential stability of the equilibrium. As an example, this control design procedure is applied to stabilize the Brockett integrator.Comment: 25 pages, 2 figure

    Asymptotic Stabilization of a Flexible Beam with an Attached Mass

    Get PDF

    On Exponential Stabilization of Nonholonomic Systems with Time-Varying Drift

    No full text
    A class of nonlinear control-affine systems with bounded time-varying drift is considered. It is assumed that the control vector fields together with their iterated Lie brackets satisfy Hormander's condition in a neighborhood of the origin. Then the problem of exponential stabilization is treated by exploiting periodic time-varying feedback controls. An explicit parametrization of such controllers is proposed under a suitable non-resonance assumption. It is shown that these controllers ensure the exponential stability of the closed-loop system provided that the period is small enough. The proposed control design methodology is applied for the stabilization of an underwater vehicle model and a front-wheel drive car.Comment: This is the author's version of the manuscript accepted for publication in the Proceedings of the Joint 8th IFAC Symposium on Mechatronic Systems and 11th IFAC Symposium on Nonlinear Control Systems (MECHATRONICS & NOLCOS 2019

    Partial Stabilization of Stochastic Systems with Application to Rotating Rigid Bodies

    No full text
    This paper addresses the problem of stabilizing a part of variables for control systems described by stochastic differential equations of the Ito type. The considered problem is related to the asymptotic stability property of invariant sets and has important applications in mechanics and engineering. Sufficient conditions for the asymptotic stability of an invariant set are proposed by using a stochastic version of LaSalle's invariance principle. These conditions are applied for constructing the state feedback controllers in the problem of single-axis stabilization of a rigid body. The cases of control torques generated by jet engines and rotors are considered as illustrations of the proposed control design methodology.Comment: This is the author's version of the manuscript accepted for publication in the Proceedings of the Joint 8th IFAC Symposium on Mechatronic Systems and 11th IFAC Symposium on Nonlinear Control Systems (MECHATRONICS & NOLCOS 2019

    Approximating a flexible beam model in the Loewner framework

    Full text link
    The paper develops the Loewner approach for data-based modeling of a linear distributed-parameter system. This approach is applied to a controlled flexible beam model coupled with a spring-mass system. The original dynamical system is described by the Euler-Bernoulli partial differential equation with the interface conditions due to the oscillations of the lumped part. The transfer function of this model is computed analytically, and its sampled values are then used for the data-driven design of a reduced model. A family of approximate realizations of the corresponding input-output map is constructed within the Loewner framework. It is shown that the proposed finite-dimensional approximations are able to capture the key properties of the original dynamics over a given range of observed frequencies. The robustness of the method to noisy data is also investigated.Comment: This is a preprint version of the paper submitted to the 2023 European Control Conference (ECC

    Periodic switching strategies for an isoperimetric control problem with application to nonlinear chemical reactions

    Full text link
    This paper deals with an isoperimetric optimal control problem for nonlinear control-affine systems with periodic boundary conditions. As it was shown previously, the candidates for optimal controls for this problem can be obtained within the class of bang-bang input functions. We consider a parametrization of these inputs in terms of switching times. The control-affine system under consideration is transformed into a driftless system by assuming that the controls possess properties of a partition of unity. Then the problem of constructing periodic trajectories is studied analytically by applying the Fliess series expansion over a small time horizon. We propose analytical results concerning the relation between the boundary conditions and switching parameters for an arbitrary number of switchings. These analytical results are applied to a mathematical model of non-isothermal chemical reactions. It is shown that the proposed control strategies can be exploited to improve the reaction performance in comparison to the steady-state operation mode.Comment: Submitted to "Applied Mathematical Modelling
    • …
    corecore