35 research outputs found

    Identification and Characterization of Circular RNAs in Brassica rapa in Response to \u3ci\u3ePlasmodiophora brassicae\u3c/i\u3e

    Get PDF
    Plasmodiophora brassicae is a soil-borne pathogen that attacks the roots of cruciferous plants and causes clubroot disease. CircRNAs are noncoding RNAs, widely existing in plant and animal species. Although knowledge of circRNAs has been updated continuously and rapidly, information about circRNAs in the regulation of clubroot disease resistance is extremely limited in Brassica rapa. Here, Chinese cabbage (BJN 222) containing clubroot resistance genes (CRa) against P. brassicae Pb4 was susceptible to PbE. To investigate the mechanism of cicRNAs responsible for clubroot disease resistance in B. rapa, circRNA-seq was performed with roots of ‘BJN 222’ at 0, 8, and 23 days postinoculated (dpi) with Pb4 and PbE. A total of 231 differentially expressed circRNAs were identified between the groups. Based on the differentially expressed circRNAs, the circRNA–miRNA–mRNA network was constructed using the target genes directly or indirectly related to plant resistance. Upregulated novel_circ_000495 suppressed the expression of miR5656-y, leading to the upregulation of Bra026508, which might cause plant resistance. Our results provide new insights into clubroot resistance mechanisms and lay a foundation for further studies exploring complex gene regulation networks in B. rapa

    The Influence of Self-Control and Social Status on Self-Deception

    Get PDF
    The purpose of this study was to explore the effects of self-control and social status on self-deception. The present study adopted a forward-looking paradigm to investigate how self-control and social status influence self-deception. In Experiment 1, participants were asked to complete 10 questions, after they predicted and completed 40 questions (commonsense judgment materials) either with or without answer hints. The results indicated that the participants had higher predicted scores under conditions with answer hints compared with conditions without answer hints and that the predicted scores were much higher than the actual scores under conditions with answer hints. In Experiment 2, individuals with different self-control traits were chosen to perform the operation and induction of the perception of social status and then complete tests such as Experiment 1. The results showed that differences in the predicted scores between conditions with answer hints and those without answer hints were observed to be greater in individuals with low self-control traits than in individuals with higher self-control traits, however, such differences between individuals with higher and low self-control traits were only observed in conditions with low social status perception, not in the conditions with high social status perception. The findings indicated that compared with individuals with high self-control, low self-control individuals tended to produce more self-deception. In addition, high social status in the individuals’ perception could restrain the influence of low self-control on self-deception, while low social status in the individuals’ perception could increase the self-control’s influence on self-deception

    Sugar Transporters in Plasmodiophora brassicae: Genome-Wide Identification and Functional Verification

    No full text
    Plasmodiophora brassicae, an obligate intracellular pathogen, can hijack the host’s carbohydrates for survival. When the host plant is infected by P. brassicae, a large amount of soluble sugar accumulates in the roots, especially glucose, which probably facilitates the development of this pathogen. Although a complete glycolytic and tricarboxylic acid cycle (TCA) cycle existed in P. brassicae, very little information about the hexose transport system has been reported. In this study, we screened 17 putative sugar transporters based on information about their typical domains. The structure of these transporters showed a lot of variation compared with that of other organisms, especially the number of transmembrane helices (TMHs). Phylogenetic analysis indicated that these sugar transporters were far from the evolutionary relationship of other organisms and were unique in P. brassicae. The hexose transport activity assay indicated that eight transporters transported glucose or fructose and could restore the growth of yeast strain EBY.VW4000, which was deficient in hexose transport. The expression level of these glucose transporters was significantly upregulated at the late inoculation time when resting spores and galls were developing and a large amount of energy was needed. Our study provides new insights into the mechanism of P. brassicae survival in host cells by hijacking and utilizing the carbohydrates of the host

    Identification and Mapping of the Clubroot Resistance Gene CRd in Chinese Cabbage (Brassica rapa ssp. pekinensis)

    No full text
    The rapid spread of clubroot disease, which is caused by Plasmodiophora brassicae, threatens Brassicaceae crop production worldwide. Breeding plants that have broad-spectrum disease resistance is one of the best ways to prevent clubroot. In the present study, eight Chinese cabbage germplasms were screened using published clubroot-resistant (CR) loci-/gene-linked markers. A CR gene Crr3 potential carrier “85-74” was detected which linked to marker BRSTS61; however, “85-74” shows different responses to local pathogens “LAB-19,” “LNND-2,” and “LAB-10” from “CR-73” which harbors Crr3. We used a next-generation sequencing-based bulked segregant analysis approach combined with genetic mapping to detect CR genes in an F2 segregant population generated from a cross between the Chinese cabbage inbred lines “85-74” (CR) and “BJN3-1” (clubroot susceptible). The “85-74” line showed resistance to a local pathogen “LAB-19” which was identified as race 4; a genetic analysis revealed that the resistance was conferred by a single dominant gene. The CR gene which we named CRd was mapped to a 60 kb (1 cM) region between markers yau389 and yau376 on chromosome A03. CRd is located upstream of Crr3 which was confirmed based on the physical positions of Crr3 linked markers. The identification of CRd linked markers can be applied to marker-assisted selection in the breeding of new CR cultivars of Chinese cabbage and other Brassica crops

    Identification and Characterization of Circular RNAs in <i>Brassica rapa</i> in Response to <i>Plasmodiophora brassicae</i>

    No full text
    Plasmodiophora brassicae is a soil-borne pathogen that attacks the roots of cruciferous plants and causes clubroot disease. CircRNAs are noncoding RNAs, widely existing in plant and animal species. Although knowledge of circRNAs has been updated continuously and rapidly, information about circRNAs in the regulation of clubroot disease resistance is extremely limited in Brassica rapa. Here, Chinese cabbage (BJN 222) containing clubroot resistance genes (CRa) against P. brassicae Pb4 was susceptible to PbE. To investigate the mechanism of cicRNAs responsible for clubroot disease resistance in B. rapa, circRNA-seq was performed with roots of ‘BJN 222’ at 0, 8, and 23 days post-inoculated (dpi) with Pb4 and PbE. A total of 231 differentially expressed circRNAs were identified between the groups. Based on the differentially expressed circRNAs, the circRNA–miRNA–mRNA network was constructed using the target genes directly or indirectly related to plant resistance. Upregulated novel_circ_000495 suppressed the expression of miR5656-y, leading to the upregulation of Bra026508, which might cause plant resistance. Our results provide new insights into clubroot resistance mechanisms and lay a foundation for further studies exploring complex gene regulation networks in B. rapa

    Mining of Brassica-Specific Genes (BSGs) and Their Induction in Different Developmental Stages and under Plasmodiophora brassicae Stress in Brassica rapa

    No full text
    Orphan genes, also called lineage-specific genes (LSGs), are important for responses to biotic and abiotic stresses, and are associated with lineage-specific structures and biological functions. To date, there have been no studies investigating gene number, gene features, or gene expression patterns of orphan genes in Brassica rapa. In this study, 1540 Brassica-specific genes (BSGs) and 1824 Cruciferae-specific genes (CSGs) were identified based on the genome of Brassica rapa. The genic features analysis indicated that BSGs and CSGs possessed a lower percentage of multi-exon genes, higher GC content, and shorter gene length than evolutionary-conserved genes (ECGs). In addition, five types of BSGs were obtained and 145 out of 529 real A subgenome-specific BSGs were verified by PCR in 51 species. In silico and semi-qPCR, gene expression analysis of BSGs suggested that BSGs are expressed in various tissue and can be induced by Plasmodiophora brassicae. Moreover, an A/C subgenome-specific BSG, BSGs1, was specifically expressed during the heading stage, indicating that the gene might be associated with leafy head formation. Our results provide valuable biological information for studying the molecular function of BSGs for Brassica-specific phenotypes and biotic stress in B. rapa

    Marker-Assisted Pyramiding of Genes for Multilocular Ovaries, Self-Compatibility, and Clubroot Resistance in Chinese Cabbage (<i>Brassica rapa</i> L. ssp. <i>pekinensis</i>)

    No full text
    Molecular marker-assisted gene pyramiding combined with backcrossing has been widely applied for crop variety improvement. Molecular marker identification could be used in the early stage of breeding to achieve the rapid and effective pyramiding of multiple genes. To create high-quality germplasm for Chinese cabbage breeding, multi-gene pyramiding for self-compatibility, multilocular, and clubroot resistance was performed through molecular marker-assisted selection. The results showed that self-compatibility and multilocular traits were controlled by a pair of recessive genes. Two flanking markers, sau_um190 and cun_246a, and marker Teo-1, based on the gene sequence related to multilocular ovaries, were used for multilocular ovary trait selection. Two flanking markers, SCF-6 and SC-12, and marker Sal-SLGI /PK1+PK4, based on the gene sequence, were used for self-compatibility selection. Two flanking markers, TCR74 and TCR79, closely linked to clubroot resistance gene CRb, were used as foreground selection markers. Based on Chinese cabbage genomic information, 111 SSR markers covering 10 chromosomes were applied for background selection. After multiple generations of selection, a multi-gene pyramided line from a BC4F2 population with self-compatibility, multilocular ovaries, and clubroot resistance was obtained with a high genomic background recovery rate. The improved pyramided line is expected to be utilized as a potential material in further breeding programs

    Transcriptome Arofile of Brassica rapa L. Reveals the Involvement of Jasmonic Acid, Ethylene, and Brassinosteroid Signaling Pathways in Clubroot Resistance

    No full text
    Plasmodiophora brassicae is a protozoan pathogen that causes clubroot disease in cruciferous plants, particularly Chinese cabbage (Brassica rapa). A previous study identified a clubroot resistance gene (CRd) conferring race-specific resistance to P. brassicae. However, the defense mechanisms of B. rapa against virulent vs. avirulent P. brassicae are poorly understood. In this study, we carried out a global transcriptional analysis in the clubroot-resistant Chinese cabbage inbred line &ldquo;85&ndash;74&rdquo; carrying the CRd gene and inoculated with avirulent (LAB-4) or virulent (SCCD-52) P. brassicae. RNA sequencing showed that &ldquo;85&ndash;74&rdquo; responded most rapidly to SCCD-52 infection, and the number of differentially expressed genes was much higher in SCCD-52-treated as compared to LAB-4-treated plants (5552 vs. 304). Transcriptome profiling revealed that plant hormone signal transduction and plant&ndash;pathogen interaction pathways played key roles in the late stages of P. brassicae infection. Genes relating to the salicyclic acid (SA), jasmonic acid (JA)/ethylene (ET), and brassinosteroid (BR) signaling pathways were up-regulated relative to untreated plants in response to LAB-4 infection at 8, 16, and 32 days post-inoculation (dpi) whereas JA, ET, and BR signaling-related genes were not activated in response to SCCD-52, and SA signaling-related genes were up-regulated in both LAB-4 and SCCD-52, suggesting that SA signaling is not the key factor in host resistance to avirulent P. brassicae. In addition, genes associated with phosphorylation and Ca2+ signaling pathways were down-regulated to a greater degree following LAB-4 as compared to SCCD-52 infection at 8 dpi. These results indicate that effector-triggered immunity in &ldquo;85&ndash;74&rdquo; is more potently activated in response to infection with avirulent P. brassicae and that JA, ET, and BR signaling are important for the host response at the late stage of infection. These findings provide insight into P. brassicae pathotype-specific defense mechanisms in cruciferous crops

    Marker-Assisted Pyramiding of Genes for Multilocular Ovaries, Self-Compatibility, and Clubroot Resistance in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)

    No full text
    Molecular marker-assisted gene pyramiding combined with backcrossing has been widely applied for crop variety improvement. Molecular marker identification could be used in the early stage of breeding to achieve the rapid and effective pyramiding of multiple genes. To create high-quality germplasm for Chinese cabbage breeding, multi-gene pyramiding for self-compatibility, multilocular, and clubroot resistance was performed through molecular marker-assisted selection. The results showed that self-compatibility and multilocular traits were controlled by a pair of recessive genes. Two flanking markers, sau_um190 and cun_246a, and marker Teo-1, based on the gene sequence related to multilocular ovaries, were used for multilocular ovary trait selection. Two flanking markers, SCF-6 and SC-12, and marker Sal-SLGI /PK1+PK4, based on the gene sequence, were used for self-compatibility selection. Two flanking markers, TCR74 and TCR79, closely linked to clubroot resistance gene CRb, were used as foreground selection markers. Based on Chinese cabbage genomic information, 111 SSR markers covering 10 chromosomes were applied for background selection. After multiple generations of selection, a multi-gene pyramided line from a BC4F2 population with self-compatibility, multilocular ovaries, and clubroot resistance was obtained with a high genomic background recovery rate. The improved pyramided line is expected to be utilized as a potential material in further breeding programs
    corecore