23 research outputs found
Response to issues on GM agriculture in Africa: Are transgenic crops safe?
The controversies surrounding transgenic crops, often called Genetically Modified Organisms (GMOs), call for a need to raise the level of public awareness of Genetic Modification (GM) technology in Africa. This should be accomplished by educating the public about the potential benefits and risks that may be associated with this new technology. In the last 15 years, GM crop producing countries have benefited from adoption of this new technology in the form of improved crop productivity, food security, and quality of life. The increased income to resource-poor farmers is a key benefit at the individual level especially as most countries using this technology are in the developing world, including three African countries (South Africa, Burkina Faso and Egypt). Despite clear benefits to countries and farmers who grow GMOs, many people are concerned about suspected potential risks associated with GMOs. This sparks debate as to whether GM technology should be adopted or not. Given the concerns regarding the safety of GMO products, thorough scientific investigation of safe application of GMOs is required. The objective of this paper is to respond to the issues of GM agriculture in Africa and some of the issues surrounding the adoption of GM crops between developed and developing countries. In this article, I analyse relevant papers relating to the adoption of GM technology particularly in developing countries including the few African countries that have adopted GM crops. The issues discussed span a wide range including: safety; potential benefits and risks; disputes between the United States of America (USA) and the European Union (EU) over adoption of GM crops with a focus on Africa continent. This article is concluded by summarising the issues raised and how GM technology can be adopted for agricultural development in Africa
Arabidopsis Homologs of Retinoblastoma-Associated Protein 46/48 Associate with a Histone Deacetylase to Act Redundantly in Chromatin Silencing
RNA molecules such as small-interfering RNAs (siRNAs) and antisense RNAs (asRNAs) trigger chromatin silencing of target loci. In the model plant Arabidopsis, RNA–triggered chromatin silencing involves repressive histone modifications such as histone deacetylation, histone H3 lysine-9 methylation, and H3 lysine-27 monomethylation. Here, we report that two Arabidopsis homologs of the human histone-binding proteins Retinoblastoma-Associated Protein 46/48 (RbAp46/48), known as MSI4 (or FVE) and MSI5, function in partial redundancy in chromatin silencing of various loci targeted by siRNAs or asRNAs. We show that MSI5 acts in partial redundancy with FVE to silence FLOWERING LOCUS C (FLC), which is a crucial floral repressor subject to asRNA–mediated silencing, FLC homologs, and other loci including transposable and repetitive elements which are targets of siRNA–directed DNA Methylation (RdDM). Both FVE and MSI5 associate with HISTONE DEACETYLASE 6 (HDA6) to form complexes and directly interact with the target loci, leading to histone deacetylation and transcriptional silencing. In addition, these two genes function in de novo CHH (H = A, T, or C) methylation and maintenance of symmetric cytosine methylation (mainly CHG methylation) at endogenous RdDM target loci, and they are also required for establishment of cytosine methylation in the previously unmethylated sequences directed by the RdDM pathway. This reveals an important functional divergence of the plant RbAp46/48 relatives from animal counterparts
Global perspectives on observing ocean boundary current systems
Ocean boundary current systems are key components of the climate system, are hometo highly productive ecosystems, and have numerous societal impacts. Establishmentof a global network of boundary current observing systems is a critical part of ongoingdevelopment of the Global Ocean Observing System. The characteristics of boundarycurrent systems are reviewed, focusing on scientific and societal motivations forsustained observing. Techniques currently used to observe boundary current systemsare reviewed, followed by a census of the current state of boundary current observingsystems globally. The next steps in the development of boundary current observingsystems are considered, leading to several specific recommendations
Recommended from our members
The East Pacific Rise current: Topographic enhancement of the interior flow in the South Pacific Ocean
Meridional volume transport in the South Pacific: Mean and SAM-related variability
The large increase in upper-ocean sampling during the past decade enables improved estimation of the mean meridional volume transport in the midlatitude South Pacific, and hence of the climatically important Meridional Overturning Circulation. Transport is computed using Argo float profile data for geostrophic shear and trajectory data for reference velocities at 1000 m. For the period 2004-2012, the mean geostrophic transport across 32S is 20.6 ± 6.0 Sv in the top 2000 m of the ocean. From west to east, this includes the southward East Australian Current (23.3 ± 2.9 Sv), its northward recirculation (16.3 ± 3.6 Sv), the broad interior northward flow (18.4 ± 4.1 Sv), and the net northward flow (9.2 ± 2.2 Sv) in opposing currents in the eastern Pacific. The basin-integrated geostrophic transport includes 7.3 ± 0.9 Sv of surface and thermocline waters, 4.9 ± 1.0 Sv of Subantarctic Mode Water, and 4.9 ± 1.4 Sv of Antarctic Intermediate Water. Interannual variability in volume transport across 32S in the South Pacific shows a Southern Annual Mode signature characterized by an increase during the positive phase of the Southern Annular Mode and a decrease during the negative phase. Maximum amplitudes in geostrophic transport anomalies, seen in the East Australian Current and East Australian Current recirculation, are consistent with wind stress curl anomalies near the western boundary. Key Points Improved meridional volume transport in the South Pacific using Argo EAC transport variability tied to the SAM © Published 2014. This article is a U.S. Government work and is in the public domain in the USA
Recommended from our members
Meridional volume transport in the South Pacific: Mean and SAM-related variability
The large increase in upper-ocean sampling during the past decade enables improved estimation of the mean meridional volume transport in the midlatitude South Pacific, and hence of the climatically important Meridional Overturning Circulation. Transport is computed using Argo float profile data for geostrophic shear and trajectory data for reference velocities at 1000 m. For the period 2004-2012, the mean geostrophic transport across 32S is 20.6 ± 6.0 Sv in the top 2000 m of the ocean. From west to east, this includes the southward East Australian Current (23.3 ± 2.9 Sv), its northward recirculation (16.3 ± 3.6 Sv), the broad interior northward flow (18.4 ± 4.1 Sv), and the net northward flow (9.2 ± 2.2 Sv) in opposing currents in the eastern Pacific. The basin-integrated geostrophic transport includes 7.3 ± 0.9 Sv of surface and thermocline waters, 4.9 ± 1.0 Sv of Subantarctic Mode Water, and 4.9 ± 1.4 Sv of Antarctic Intermediate Water. Interannual variability in volume transport across 32S in the South Pacific shows a Southern Annual Mode signature characterized by an increase during the positive phase of the Southern Annular Mode and a decrease during the negative phase. Maximum amplitudes in geostrophic transport anomalies, seen in the East Australian Current and East Australian Current recirculation, are consistent with wind stress curl anomalies near the western boundary. Key Points Improved meridional volume transport in the South Pacific using Argo EAC transport variability tied to the SAM © Published 2014. This article is a U.S. Government work and is in the public domain in the USA
Estimating the Velocity and Transport of Western Boundary Current Systems: A Case Study of the East Australian Current near Brisbane
AbstractWestern boundary currents (WBCs) are highly variable narrow meandering jets, making assessment of their volume transports a complex task. The required high-resolution temporal and spatial measurements are available only at a limited number of sites. In this study a method is developed for improving estimates of the East Australian Current (EAC) mean transport and its low-frequency variability, using complementary modern datasets. The present calculation is a case study that will be extended to other subtropical WBCs. The method developed in this work will reduce uncertainties in estimates of the WBC volume transport and in the interannual mass and heat budgets of the meridional overturning circulations, improving our understanding of the response of WBCs to local and remote forcing on long time scales. High-resolution expendable bathythermograph (HR-XBT) profiles collected along a transect crossing the EAC system near Brisbane, Australia, are merged with coexisting profiles and parking-depth trajectories from Argo floats, and with altimetric sea surface height data. Using HR-XBT/Argo/altimetry data combined with Argo trajectory-based velocities at 1000 m, the 2004–15 mean poleward alongshore transport of the EAC is 19.5 ± 2.0 Sv (1 Sv ≡ 106 m3 s−1) of which 2.5 ± 0.5 Sv recirculate equatorward just offshore of the EAC. These transport estimates are consistent in their mean and variability with concurrent and nearly collocated moored observations at 27°S, and with earlier moored observations along 30°S. Geostrophic transport anomalies in the EAC system, including the EAC recirculation, show a standard deviation of ±3.1 Sv at interannual time scales between 2004 and 2015