69 research outputs found

    Deep learning for epileptogenic zone delineation from the invasive EEG: challenges and lookouts

    Get PDF
    This scientific commentary refers to 'Refining epileptogenic high-frequency oscillations using deep learning: a reverse engineering approach' by Zhang et al. (https://doi.org/10.1093/braincomms/fcab267)

    HFO to Measure Seizure Propensity and Improve Prognostication in Patients With Epilepsy

    Get PDF
    The study of high frequency oscillations (HFO) in the electroencephalogram (EEG) as biomarkers of epileptic activity has merely focused on their spatial location and relationship to the epileptogenic zone. It has been suggested in several ways that the amount of HFO at a certain point in time may reflect the disease activity or severity. This could be clinically useful in several ways, especially as noninvasive recording of HFO appears feasible. We grouped the potential hypotheses into 4 categories: (1) HFO as biomarkers to predict the development of epilepsy; (2) HFO as biomarkers to predict the occurrence of seizures; (3) HFO as biomarkers linked to the severity of epilepsy, and (4) HFO as biomarkers to evaluate outcome of treatment. We will review the literature that addresses these 4 hypotheses and see to what extent HFO can be used to measure seizure propensity and help determine prognosis of this unpredictable disease

    Исследование обогатимости вмещающих пород базальтового месторождения методом отсадки

    Get PDF
    У роботі представлено результати лабораторних досліджень збагачуваності складників порід базальтового родовища у вигляді базальту, туфу та лавобрекчії методом відсадки. Одержано середні цифри з виходу важких фракцій.In work the results of laboratory researches concentration of making breeds of a basalt deposit as basalt, tuff and lavabreccia by a method thickening are accounted. The average figures on an output of heavy fractions are received

    Potential merits and flaws of large language models in epilepsy care: A critical review

    Get PDF
    The current pace of development and applications of large language models (LLMs) is unprecedented and will impact future medical care significantly. In this critical review, we provide the background to better understand these novel artificial intelligence (AI) models and how LLMs can be of future use in the daily care of people with epilepsy. Considering the importance of clinical history taking in diagnosing and monitoring epilepsy—combined with the established use of electronic health records—a great potential exists to integrate LLMs in epilepsy care. We present the current available LLM studies in epilepsy. Furthermore, we highlight and compare the most commonly used LLMs and elaborate on how these models can be applied in epilepsy. We further discuss important drawbacks and risks of LLMs, and we provide recommendations for overcoming these limitations

    High-frequency oscillations in scalp EEG: A systematic review of methodological choices and clinical findings

    Get PDF
    Objective: Pathological high-frequency oscillations (HFOs) in intracranial EEG are promising biomarkers of epileptogenic tissue, and their physiological counterparts play a role in sensorimotor and cognitive function. HFOs have also been found in scalp EEG, but an overview of all studies is lacking. In this systematic review, we assessed the methodology to detect scalp HFOs and their clinical potential. Methods: We searched PubMed, Embase and the Cochrane Library for studies on HFOs in scalp EEG, and extracted methodological and clinical data. Results: We included 60 studies with data from 1149 unique individuals. Two-thirds of studies analyzed HFOs visually in the time or time–frequency domain, and one-third automatically with visual validation. Most studies evaluated interictal ripples during sleep in children. Pathological HFOs were overall better than spikes in localizing the epileptogenic zone and predicting outcome, correlated negatively with cognition and positively with disease activity and severity, and decreased after medical and surgical treatment. Conclusions: The methodologies of the 60 studies were heterogeneous, but pathological scalp HFOs were clinically valuable as biomarkers in various situations, particularly in children with epilepsy. Significance: This systematic review gives an extensive overview of methodological and clinical data on scalp HFOs, establishing their clinical potential and discussing their limitations

    Prognostic Value of Complete Resection of the High-Frequency Oscillation Area in Intracranial EEG: A Systematic Review and Meta-Analysis

    Get PDF
    BACKGROUND AND OBJECTIVES: High-frequency oscillations (HFOs; ripples 80-250 Hz; fast ripples [FRs] 250-500 Hz) recorded with intracranial electrodes generated excitement and debate about their potential to localize epileptogenic foci. We performed a systematic review and meta-analysis on the prognostic value of complete resection of the HFOs-area (crHFOs-area) for epilepsy surgical outcome in intracranial EEG (iEEG) accessing multiple subgroups. METHODS: We searched PubMed, Embase, and Web of Science for original research from inception to October 27, 2022. We defined favorable surgical outcome (FSO) as Engel class I, International League Against Epilepsy class 1, or seizure-free status. The prognostic value of crHFOs-area for FSO was assessed by (1) the pooled FSO proportion after crHFOs-area; (2) FSO for crHFOs-area vs without crHFOs-area; and (3) the predictive performance. We defined high combined prognostic value as FSO proportion >80% + FSO crHFOs-area >without crHFOs-area + area under the curve (AUC) >0.75 and examined this for the clinical subgroups (study design, age, diagnostic type, HFOs-identification method, HFOs-rate thresholding, and iEEG state). Temporal lobe epilepsy (TLE) was compared with extra-TLE through dichotomous variable analysis. Individual patient analysis was performed for sex, affected hemisphere, MRI findings, surgery location, and pathology. RESULTS: Of 1,387 studies screened, 31 studies (703 patients) met our eligibility criteria. Twenty-seven studies (602 patients) analyzed FRs and 20 studies (424 patients) ripples. Pooled FSO proportion after crHFOs-area was 81% (95% CI 76%-86%) for FRs and 82% (73%-89%) for ripples. Patients with crHFOs-area achieved more often FSO than those without crHFOs-area (FRs odds ratio [OR] 6.38, 4.03-10.09, p < 0.001; ripples 4.04, 2.32-7.04, p < 0.001). The pooled AUCs were 0.81 (0.77-0.84) for FRs and 0.76 (0.72-0.79) for ripples. Combined prognostic value was high in 10 subgroups: retrospective, children, long-term iEEG, threshold (FRs and ripples) and automated detection and interictal (FRs). FSO after complete resection of FRs-area (crFRs-area) was achieved less often in people with TLE than extra-TLE (OR 0.37, 0.15-0.89, p = 0.006). Individual patient analyses showed that crFRs-area was seen more in patients with FSO with than without MRI lesions (p = 0.02 after multiple correction). DISCUSSION: Complete resection of the brain area with HFOs is associated with good postsurgical outcome. Its prognostic value holds, especially for FRs, for various subgroups. The use of HFOs for extra-TLE patients requires further evidence

    Clinical characteristics and diagnoses of 1213 children referred to a first seizure clinic

    Get PDF
    Objective: New-onset seizure-like events (SLEs) are common in children, but differentiating between epilepsy and its mimics is challenging. This study provides an overview of the clinical characteristics, diagnoses, and corresponding etiologies of children evaluated at a first seizure clinic (FSC), which will be helpful for all physicians involved in the care of children with SLEs. Methods: We included 1213 children who were referred to the FSC of a Dutch tertiary children's hospital over a 13-year period and described their clinical characteristics, first routine EEG recording results, and the distribution and specification of their eventual epilepsy and non-epilepsy diagnoses. The time interval to correct diagnosis and the diagnostic accuracy of the FSC were evaluated. Results: “Epilepsy” was eventually diagnosed in 407 children (33.5%), “no epilepsy” in 737 (60.8%), and the diagnosis remained “unclear” in 69 (5.7%). Epileptiform abnormalities were seen in 60.9% of the EEG recordings in the “epilepsy” group, and in 5.7% and 11.6% of the “no epilepsy” and “unclear” group, respectively. Of all children with final “epilepsy” and “no epilepsy” diagnoses, 68.6% already received their diagnosis at FSC consultation, and 2.9% of the children were initially misdiagnosed. The mean time to final diagnosis was 2.0 months, and 91.3% of all children received their final diagnosis within 12 months after the FSC consultation. Significance: We describe the largest pediatric FSC cohort to date, which can serve as a clinical frame of reference. The experience and expertise built at FSCs will improve and accelerate diagnosis in children with SLEs. Plain language summary: Many children experience events that resemble but not necessarily are seizures. Distinguishing between seizures and seizure mimics is important but challenging. Specialized first-seizure clinics can help with this. Here, we report data from 1213 children who were referred to the first seizure clinic of a Dutch children's hospital. One-third of them were diagnosed with epilepsy. In 68.8% of all children—with and without epilepsy—the diagnosis was made during the first consultation. Less than 3% were misdiagnosed. This study may help physicians in what to expect regarding the diagnoses in children who present with events that resemble seizures

    Accurate differentiation between physiological and pathological ripples recorded with scalp-EEG

    Get PDF
    OBJECTIVE: To compare scalp-EEG recorded physiological ripples co-occurring with vertex waves to pathological ripples co-occurring with interictal epileptiform discharges (IEDs). METHODS: We marked ripples in sleep EEGs of children. We compared the start of ripples to vertex wave- or IED-start, and duration, frequency, and root mean square (RMS) amplitude of physiological and pathological ripples using multilevel modeling. Ripples were classified as physiological or pathological using linear discriminant analysis. RESULTS: We included 40 children with and without epilepsy. Ripples started (χ2(1) = 38.59, p < 0.001) later if they co-occurred with vertex waves (108.2 ms after vertex wave-start) than if they co-occurred with IEDs (4.3 ms after IED-start). Physiological ripples had longer durations (75.7 ms vs 53.0 ms), lower frequencies (98.3 Hz vs 130.6 Hz), and lower RMS amplitudes (0.9 μV vs 1.8 μV, all p < 0.001) than pathological ripples. Ripples could be classified as physiological or pathological with 98 % accuracy. Ripples recorded in children with idiopathic or symptomatic epilepsy seemed to form two subgroups of pathological ripples. CONCLUSIONS: Ripples co-occurring with vertex waves or IEDs have different characteristics and can be differentiated as physiological or pathological with high accuracy. SIGNIFICANCE: This is the first study that compares physiological and pathological ripples recorded with scalp EEG

    The value of intra-operative electrographic biomarkers for tailoring during epilepsy surgery: from group-level to patient-level analysis

    Get PDF
    Signal analysis biomarkers, in an intra-operative setting, may be complementary tools to guide and tailor the resection in drug-resistant focal epilepsy patients. Effective assessment of biomarker performances are needed to evaluate their clinical usefulness and translation. We defined a realistic ground-truth scenario and compared the effectiveness of different biomarkers alone and combined to localize epileptogenic tissue during surgery. We investigated the performances of univariate, bivariate and multivariate signal biomarkers applied to 1 min inter-ictal intra-operative electrocorticography to discriminate between epileptogenic and non-epileptogenic locations in 47 drug-resistant people with epilepsy (temporal and extra-temporal) who had been seizure-free one year after the operation. The best result using a single biomarker was obtained using the phase-amplitude coupling measure for which the epileptogenic tissue was localized in 17 out of 47 patients. Combining the whole set of biomarkers provided an improvement of the performances: 27 out of 47 patients. Repeating the analysis only on the temporal-lobe resections we detected the epileptogenic tissue in 29 out of 30 combining all the biomarkers. We suggest that the assessment of biomarker performances on a ground-truth scenario is required to have a proper estimate on how biomarkers translate into clinical use. Phase-amplitude coupling seems the best performing single biomarker and combining biomarkers improves localization of epileptogenic tissue. Performance achieved is not adequate as a tool in the operation theater yet, but it can improve the understanding of pathophysiological process

    Robust compression and detection of epileptiform patterns in ECoG using a real-time spiking neural network hardware framework

    Get PDF
    Interictal Epileptiform Discharges (IED) and High Frequency Oscillations (HFO) in intraoperative electrocorticography (ECoG) may guide the surgeon by delineating the epileptogenic zone. We designed a modular spiking neural network (SNN) in a mixed-signal neuromorphic device to process the ECoG in real-time. We exploit the variability of the inhomogeneous silicon neurons to achieve efficient sparse and decorrelated temporal signal encoding. We interface the full-custom SNN device to the BCI2000 real-time framework and configure the setup to detect HFO and IED co-occurring with HFO (IED-HFO). We validate the setup on pre-recorded data and obtain HFO rates that are concordant with a previously validated offline algorithm (Spearman’s ρ = 0.75, p = 1e-4), achieving the same postsurgical seizure freedom predictions for all patients. In a remote on-line analysis, intraoperative ECoG recorded in Utrecht was compressed and transferred to Zurich for SNN processing and successful IED-HFO detection in real-time. These results further demonstrate how automated remote real-time detection may enable the use of HFO in clinical practice
    corecore