21 research outputs found

    Climate change perceptions and pro-environmental behaviours among EPL fans in China and Hong Kong [Abstract]

    No full text
    Climate change perceptions and pro-environmental behaviours among EPL fans in China and Hong Kong [Abstract]</p

    Facile Synthesis of Alkali Metal Polyhedral Oligomeric Silsesquioxane Salt and Its Application in Flame-Retardant Epoxy Resins

    No full text
    A series of metal polyhedral oligomeric silsesquioxane salts (POSS-M, M = Li or Na or K) were facilely synthesized using the click reaction and neutralization reaction. The chemical structure of POSS-M was confirmed by FT-IR, 1H, 13C, 29Si NMR, and XRD patterns. The well-characterized POSS-M was introduced into epoxy resins. The epoxy composites containing POSS-Na achieved the UL-94 V1 rating, and the highest LOI value also came from EP/POSS-Na, which was 27.4%. A dramatical decrease in pHRR was observed in all three composites. With 3 wt % POSS-M, the pHRR of epoxy composites dropped by up to 64.2%. Notably, compact char layers with sodium silicate on the surface were clearly observed for the first time, extending the silicon-containing flame retardant mechanism

    Biobased Self-Growing Approach toward Tailored, Integrated High-Performance Flexible Lithium-Ion Battery

    No full text
    Here we present an innovative, universal, scalable, and straightforward strategy for cultivating a resilient, flexible lithium-ion battery (LIB) based on the bacterial-based self-growing approach. The electrodes and separator layers are integrated intrinsically into one unity of sandwich bacterial cellulose integrated film (SBCIF), with various active material combinations and tailored mechanical properties. The flexible LIB thereof showcases prominent deformation tolerance and multistage foldability due to the unique self-generated wavy-like structure. The LTO|LFP (Li4Ti5O12 and LiFePO4) SBCIF-based flexible LIB demonstrates reliable long-term electrochemical stability with high flexibility, by exhibiting a high capacity retention (>95%) after 500 cycles at 1C/1C after experiencing a 10ā€Æ000 bending/flattening treatment. The LTO|LFP SBCIF battery subjected to a simultaneous bending/flattening and cycling experiment shows an extraordinary capacity retention rate (>68%) after 200 cycles at 1C/1C. The biobased self-growing approach offers an exciting and promising pathway toward the tailored, integrated high-performance flexible LIBs

    Massively Parallel Patterning of Complex 2D and 3D Functional Polymer Brushes by Polymer Pen Lithography

    No full text
    We report the first demonstration of centimeter-area serial patterning of complex 2D and 3D functional polymer brushes by high-throughput polymer pen lithography. Arbitrary 2D and 3D structures of polyĀ­(glycidyl methacrylate) (PGMA) brushes are fabricated over areas as large as 2 cm Ɨ 1 cm, with a remarkable throughput being 3 orders of magnitudes higher than the state-of-the-arts. Patterned PGMA brushes are further employed as resist for fabricating Au micro/nanostructures and hard molds for the subsequent replica molding of soft stamps. On the other hand, these 2D and 3D PGMA brushes are also utilized as robust and versatile platforms for the immobilization of bioactive molecules to form 2D and 3D patterned DNA oligonucleotide and protein chips. Therefore, this low-cost, yet high-throughput ā€œbench-topā€ serial fabrication method can be readily applied to a wide range of fields including micro/nanofabrication, optics and electronics, smart surfaces, and biorelated studies

    Biobased Self-Growing Approach toward Tailored, Integrated High-Performance Flexible Lithium-Ion Battery

    No full text
    Here we present an innovative, universal, scalable, and straightforward strategy for cultivating a resilient, flexible lithium-ion battery (LIB) based on the bacterial-based self-growing approach. The electrodes and separator layers are integrated intrinsically into one unity of sandwich bacterial cellulose integrated film (SBCIF), with various active material combinations and tailored mechanical properties. The flexible LIB thereof showcases prominent deformation tolerance and multistage foldability due to the unique self-generated wavy-like structure. The LTO|LFP (Li4Ti5O12 and LiFePO4) SBCIF-based flexible LIB demonstrates reliable long-term electrochemical stability with high flexibility, by exhibiting a high capacity retention (>95%) after 500 cycles at 1C/1C after experiencing a 10ā€Æ000 bending/flattening treatment. The LTO|LFP SBCIF battery subjected to a simultaneous bending/flattening and cycling experiment shows an extraordinary capacity retention rate (>68%) after 200 cycles at 1C/1C. The biobased self-growing approach offers an exciting and promising pathway toward the tailored, integrated high-performance flexible LIBs

    Biobased Self-Growing Approach toward Tailored, Integrated High-Performance Flexible Lithium-Ion Battery

    No full text
    Here we present an innovative, universal, scalable, and straightforward strategy for cultivating a resilient, flexible lithium-ion battery (LIB) based on the bacterial-based self-growing approach. The electrodes and separator layers are integrated intrinsically into one unity of sandwich bacterial cellulose integrated film (SBCIF), with various active material combinations and tailored mechanical properties. The flexible LIB thereof showcases prominent deformation tolerance and multistage foldability due to the unique self-generated wavy-like structure. The LTO|LFP (Li4Ti5O12 and LiFePO4) SBCIF-based flexible LIB demonstrates reliable long-term electrochemical stability with high flexibility, by exhibiting a high capacity retention (>95%) after 500 cycles at 1C/1C after experiencing a 10ā€Æ000 bending/flattening treatment. The LTO|LFP SBCIF battery subjected to a simultaneous bending/flattening and cycling experiment shows an extraordinary capacity retention rate (>68%) after 200 cycles at 1C/1C. The biobased self-growing approach offers an exciting and promising pathway toward the tailored, integrated high-performance flexible LIBs

    Visible-Light Photolabile, Charge-Convertible Poly(ionic liquid) for Light-degradable Films and Carbon-Based Electronics

    No full text
    We report for the first time an innovative visible-light photolabile polyĀ­(ionic liquid) (VP-PIL). The as-prepared VP-PIL features low <i>T</i><sub>g</sub> (47 Ā°C), good thermal stability (<i>T</i><sub>d</sub> ā‰ˆ 284 Ā°C) and solubility in ranges of polar solvents. Upon blue light irradiation (āˆ¼452 nm), Cā€“O bonds of picolinuim units are photocleaved, and the charges of PILs are simultaneously converted from positive to negative. Taking full advantages of these excellent properties of VP-PIL, a visible light degradable film for the first time is fabricated. Moreover, to demonstrate its applications in electronics, we prepared high-quality VP-PIL-containing conductive ink for flexible interconnects and graphene electrodes for supercapacitors

    Protein Crystallization-Mediated Self-Strengthening of High-Performance Printable Conducting Organohydrogels

    No full text
    Conductive polymers have many advanced applications, but there is still an important target in developing a general and straightforward strategy for printable, mechanically stable, and durable organohydrogels with typical conducting polymers of, for example, polypyrrole, polyaniline, or poly(3,4-ethylenedioxythiophene). Here we report a protein crystallization-mediated self-strengthening strategy to fabricate printable conducting organohydrogels with the combination of rational photochemistry design. Such organohydrogels are one-step prepared via rapidly and orthogonally controllable photopolymerizations of pyrroles and gelatin protein in tens of seconds. As-prepared conducting organohydrogels are patterned and printed to complicated structures via shadow-mask lithography and 3D extrusion technology. The mild photocatalytic system gives the transition metal carbide/nitride (MXene) component high stability during the oxidative preparation process and storage. Controlling water evaporation promotes gelatin crystallization in the as-prepared organohydrogels that significantly self-strengthens their mechanical property and stability in a broad temperature range and durability against continuous friction treatment without introducing guest functional materials. Also, these organohydrogels have commercially electromagnetic shielding, thermal conducting properties, and temperature- and light-responsibility. To further demonstrate the merits of this simple strategy and as-prepared organohydrogels, prism arrays, as proofs-of-concept, are printed and applied to make wearable triboelectric nanogenerators. This self-strengthening process and 3D-printability can greatly improve their voltage, charge, and current output performances compared to the undried and flat samples

    Influence of Morphology on the Mechanical Properties of Polymer Nanocomposites Filled with Uniform or Patchy Nanoparticles

    No full text
    In this work we perform molecular-dynamics simulations, both on the coarse-grained and the chemistry-specific levels, to study the influence of morphology on the mechanical properties of polymer nanocomposites (PNCs) filled with uniform spherical nanoparticles (which means without chemical modification) and patchy spherical nanoparticles (with discrete, attractive interaction sites at prescribed locations on the particle surface). Through the coarse-grained model, the nonlinear decrease of the elastic modulus (<i>G</i>ā€²) and the maximum of the viscous modulus (<i>G</i>ā€³) around the shear strain of 10% is clearly reproduced. By turning to the polybutadiene model, we examine the effect of the shear amplitude and the interaction strength among uniform NPs on the aggregation kinetics. Interestingly, the change of the <i>G</i>ā€² as a function of the aggregation time exhibited a maximum value at intermediate time attributed to the formation of a polymer-bridged filler network in the case of strong interaction between NPs. By imposing a dynamic periodic shear, we probe the change of the <i>G</i>ā€² as a function of the strain amplitude while varying the interaction strength between uniform NPs and its weight fraction. A continuous filler network is developed at a moderate shear amplitude, which is critically related to the interaction strength between NPs and the weight fraction of the fillers. In addition, we study the self-assembly of the patchy NPs, which form the typical chain-like and sheet-like structures. For the first time, the effect of these self-assembled structures on the viscoelastic and stressā€“strain behavior of PNCs is compared. In general, in the coarse-grained model we focus on the size effect of the rough NPs on the Payne effect, while some other parameters such as the dynamic shear flow, the interaction strength between NPs, the weight fraction, and the chemically heterogeneous surface of the NPs are explored for the chemistry-specific model

    Influence of Morphology on the Mechanical Properties of Polymer Nanocomposites Filled with Uniform or Patchy Nanoparticles

    No full text
    In this work we perform molecular-dynamics simulations, both on the coarse-grained and the chemistry-specific levels, to study the influence of morphology on the mechanical properties of polymer nanocomposites (PNCs) filled with uniform spherical nanoparticles (which means without chemical modification) and patchy spherical nanoparticles (with discrete, attractive interaction sites at prescribed locations on the particle surface). Through the coarse-grained model, the nonlinear decrease of the elastic modulus (<i>G</i>ā€²) and the maximum of the viscous modulus (<i>G</i>ā€³) around the shear strain of 10% is clearly reproduced. By turning to the polybutadiene model, we examine the effect of the shear amplitude and the interaction strength among uniform NPs on the aggregation kinetics. Interestingly, the change of the <i>G</i>ā€² as a function of the aggregation time exhibited a maximum value at intermediate time attributed to the formation of a polymer-bridged filler network in the case of strong interaction between NPs. By imposing a dynamic periodic shear, we probe the change of the <i>G</i>ā€² as a function of the strain amplitude while varying the interaction strength between uniform NPs and its weight fraction. A continuous filler network is developed at a moderate shear amplitude, which is critically related to the interaction strength between NPs and the weight fraction of the fillers. In addition, we study the self-assembly of the patchy NPs, which form the typical chain-like and sheet-like structures. For the first time, the effect of these self-assembled structures on the viscoelastic and stressā€“strain behavior of PNCs is compared. In general, in the coarse-grained model we focus on the size effect of the rough NPs on the Payne effect, while some other parameters such as the dynamic shear flow, the interaction strength between NPs, the weight fraction, and the chemically heterogeneous surface of the NPs are explored for the chemistry-specific model
    corecore