119 research outputs found

    Multistep transition of diamond to warm dense matter state revealed by femtosecond X-ray diffraction

    Full text link
    Diamond bulk irradiated with a free-electron laser pulse of 6100 eV photon energy, 5 fs duration, at the ∼19−25\sim 19-25 eV/atom absorbed doses, is studied theoretically on its way to warm dense matter state. Simulations with our hybrid code XTANT show disordering on sub-100 fs timescale, with the diffraction peak (220) vanishing faster than the peak (111). The warm dense matter formation proceeds as a nonthermal damage of diamond with the band gap collapse triggering atomic disordering. Short-living graphite-like state is identified during a few femtoseconds between the disappearance of (220) peak and the disappearance of (111) peak. The results obtained are compared with the data from the recent experiment at SACLA, showing qualitative agreement. Challenges remaining for the accurate modeling of the transition of solids to warm dense matter state and proposals for supplementary measurements are discussed in detail.Comment: Preprint, submitte

    Thermal and nonthermal melting of silicon under femtosecond x-ray irradiation

    Get PDF
    As it is known from visible light experiments, silicon under femtosecond pulse irradiation can undergo the so-called 'nonthermal melting' if the density of electrons excited from the valence to the conduction band overcomes a certain critical value. Such ultrafast transition is induced by strong changes in the atomic potential energy surface, which trigger atomic relocation. However, heating of a material due to the electron-phonon coupling can also lead to a phase transition, called 'thermal melting'. This thermal melting can occur even if the excited-electron density is much too low to induce non-thermal effects. To study phase transitions, and in particular, the interplay of the thermal and nonthermal effects in silicon under a femtosecond x-ray irradiation, we propose their unified treatment by going beyond the Born-Oppenheimer approximation within our hybrid model based on tight binding molecular dynamics. With our extended model we identify damage thresholds for various phase transitions in irradiated silicon. We show that electron-phonon coupling triggers the phase transition of solid silicon into a low-density liquid phase if the energy deposited into the sample is above ∼0.65\sim0.65 eV per atom. For the deposited doses of over ∼0.9\sim0.9 eV per atom, solid silicon undergoes a phase transition into high-density liquid phase triggered by an interplay between electron-phonon heating and nonthermal effects. These thresholds are much lower than those predicted with the Born-Oppenheimer approximation (∼2.1\sim2.1 eV/atom), and indicate a significant contribution of electron-phonon coupling to the relaxation of the laser-excited silicon. We expect that these results will stimulate dedicated experimental studies, unveiling in detail various paths of structural relaxation within laser-irradiated silicon

    Spin structure function g1(x,Q2)g_1(x,Q^2) and the DHGHY integral I(Q2)I(Q^2) at low Q2Q^2: predictions from the GVMD model

    Get PDF
    Theoretical predictions for polarized nucleon structure function g1(x,Q2)g_1(x,Q^2) at low Q2Q^2 are obtained in the framework of the Generalized Vector Meson Dominance model. Contributions from both light and heavy vector mesons are evaluated. In the photoproduction limit the first moment of g1g_1 is related to the static properties of nucleon via the Drell-Hearn-Gerasimov-Hosoda-Yamamoto sum rule. This property is employed to fix the magnitude of the light vector meson contribution to g1g_1, using the recent measurements in the region of baryonic resonances. Results are compared to the data on g1(x,Q2)g_1(x,Q^2). Finally, the DHGHY moment function I(Q2)I(Q^2) is calculated, and our theoretical predictions are confronted with the recent preliminary data obtained at the Jefferson Laboratory.Comment: 12 pages including 6 postscript figures, corrected ref.22, caption to fig.4 and a few typo

    Electron-ion coupling in semiconductors beyond Fermi's golden rule

    Full text link
    In the present work, a theoretical study of electron-phonon (electron-ion) coupling rates in semiconductors driven out of equilibrium is performed. Transient change of optical coefficients reflects the band gap shrinkage in covalently bonded materials, and thus, the heating of atomic lattice. Utilizing this dependence, we test various models of electron-ion coupling. The simulation technique is based on tight-binding molecular dynamics. Our simulations with the dedicated hybrid approach (XTANT) indicate that the widely used Fermi's golden rule can break down describing material excitation on femtosecond time scales. In contrast, dynamical coupling proposed in this work yields a reasonably good agreement of simulation results with available experimental data

    Hydrodynamic model for picosecond propagation of laser-created nanoplasmas

    Full text link
    The interaction of a free-electron-laser pulse with a moderate or large size cluster is known to create a quasi-neutral nanoplasma, which then expands on hydrodynamic timescale, i.e., >1>1 ps. To have a better understanding of ion and electron data from experiments derived from laser-irradiated clusters, one needs to simulate cluster dynamics on such long timescales for which the molecular dynamics approach becomes inefficient. We therefore propose a two-step Molecular Dynamics-Hydrodynamic scheme. In the first step we use molecular dynamics code to follow the dynamics of an irradiated cluster until all the photo-excitation and corresponding relaxation processes are finished and a nanoplasma, consisting of ground-state ions and thermalized electrons, is formed. In the second step we perform long-timescale propagation of this nanoplasma with a computationally efficient hydrodynamic approach. In the present paper we examine the feasibility of a hydrodynamic two-fluid approach to follow the expansion of spherically symmetric nanoplasma, without accounting for the impact ionization and three-body recombination processes at this stage. We compare our results with the corresponding molecular dynamics simulations. We show that all relevant information about the nanoplasma propagation can be extracted from hydrodynamic simulations at a significantly lower computational cost when compared to a molecular dynamics approach. Finally, we comment on the accuracy and limitations of our present model and discuss possible future developments of the two-step strategy.Comment: 14 pages, 6 figure

    Quantum-mechanical calculation of ionization potential lowering in dense plasmas

    Full text link
    The charged environment within a dense plasma leads to the phenomenon of ionization potential depression (IPD) for ions embedded in the plasma. Accurate predictions of the IPD effect are of crucial importance for modeling atomic processes occurring within dense plasmas. Several theoretical models have been developed to describe the IPD effect, with frequently discrepant predictions. Only recently, first experiments on IPD in Al plasma have been performed with an x-ray free-electron laser (XFEL), where their results were found to be in disagreement with the widely-used IPD model by Stewart and Pyatt. Another experiment on Al, at the Orion laser, showed disagreement with the model by Ecker and Kr\"oll. This controversy shows a strong need for a rigorous and consistent theoretical approach to calculate the IPD effect. Here we propose such an approach: a two-step Hartree-Fock-Slater model. With this parameter-free model we can accurately and efficiently describe the experimental Al data and validate the accuracy of standard IPD models. Our model can be a useful tool for calculating atomic properties within dense plasmas with wide-ranging applications to studies on warm dense matter, shock experiments, planetary science, inertial confinement fusion and studies of non-equilibrium plasmas created with XFELs.Comment: 13 pages, 9 figures, to be published in Phys. Rev. X; added references [46,47
    • …
    corecore