9,143 research outputs found

    Thomas-Ehrman effect in a three-body model: 16^{16}Ne case

    Get PDF
    The dynamic mechanism of the Thomas-Ehrman shift is studied in three-cluster systems by example of 16^{16}Ne and 16^{16}C isobaric mirror partners. We predict configuration mixings for 0+0^+ and 2+2^+ states in 16^{16}Ne and 16^{16}C. Large isospin symmetry breaking on the level of wave function component weights is demonstrated for these states and discussed as three-body mechanism of Thomas-Ehrman shift. It is shown that the description of the Coulomb displacement energies requires a consistency among three parameters: the 16^{16}Ne decay energy ETE_T, the 15^{15}F ground state energy ErE_r, and the configuration mixing parameters for the 16^{16}Ne/16^{16}C 0+0^+ and 2+2^+ states. Basing on this analysis we infer the 15^{15}F 1/2+1/2^+ ground state energy to be Er=1.39−1.42E_r=1.39-1.42 MeV.Comment: 10 pages 8 figure

    Four-Probe Measurements of Carbon Nanotubes with Narrow Metal Contacts

    Full text link
    We find that electrons in single-wall carbon nanotubes may propagate substantial distances (tens of nanometers) under the metal contacts. We perform four-probe transport measurements of the nanotube conductance and observe significant deviations from the standard Kirchhoff's circuit rules. Most noticeably, injecting current between two neighboring contacts on one end of the nanotube, induces a non-zero voltage difference between two contacts on the other end.Comment: 4 pages, 5 figures; submitte

    Low polarized emission from the core of coronal mass ejections

    Full text link
    In white-light coronagraph images, cool prominence material is sometimes observed as bright patches in the core of coronal mass ejections (CMEs). If, as generally assumed, this emission is caused by Thomson-scattered light from the solar surface, it should be strongly polarised tangentially to the solar limb. However, the observations of a CME made with the SECCHI/STEREO coronagraphs on 31 August 2007 show that the emission from these bright core patches is exceptionally low polarised. We used the polarisation ratio method of Moran and Davila (2004) to localise the barycentre of the CME cloud. By analysing the data from both STEREO spacecraft we could resolve the plane-of-the-sky ambiguity this method usually suffers from. Stereoscopic triangulation was used to independently localise the low-polarisation patch relative to the cloud. We demonstrated for the first time that the bright core material is located close to the centre of the CME cloud. We show that the major part of the CME core emission, more than 85% in our case, is Hα\alpha radiation and only a small fraction is Thomson-scattered light. Recent calculations also imply that the plasma density in the patch is 8 108^8 cm−3^{-3} or more compared to 2.6 106^6 cm−3^{-3} for the Thomson-scattering CME environment surrounding the core material.Comment: 5 pages, 3 figure

    Pauli-principle driven correlations in four-neutron nuclear decays

    Full text link
    Mechanism of simultaneous non-sequential four-neutron (4n4n) emission (or `true' 4n4n-decay) has been considered in phenomenological five-body approach. This approach is analogous to the model of the direct decay to the continuum often applied to 2n2n- and 2p2p-decays. It is demonstrated that 4n4n-decay fragments should have specific energy and angular correlations reflecting strong spatial correlations of `valence' nucleons orbiting in their 4n4n-precursors. Due to the Pauli exclusion principle, the valence neutrons are pushed to the symmetry-allowed configurations in the 4n4n-precursor structure, which causes a `Pauli focusing' effect. Prospects of the observation of the Pauli focusing have been considered for the 4n4n-precursors 7^7H and 28^{28}O. Fingerprints of their nuclear structure or/and decay dynamics are predicted
    • …
    corecore