48 research outputs found

    Liraglutide therapy in an adolescent with Prader‑Willi syndrome and concomitant diabetes mellitus

    Get PDF
    Not required for Clinical Vignette

    Comparative Analysis of PvPAP Gene Family and Their Functions in Response to Phosphorus Deficiency in Common Bean

    Get PDF
    BACKGROUND: Purple acid phosphatases (PAPs) play a vital role in adaptive strategies of plants to phosphorus (P) deficiency. However, their functions in relation to P efficiency are fragmentary in common bean. PRINCIPAL FINDINGS: Five PvPAPs were isolated and sequenced in common bean. Phylogenetic analysis showed that PvPAPs could be classified into two groups, including a small group with low molecular mass, and a large group with high molecular mass. Among them, PvPAP3, PvPAP4 and PvPAP5 belong to the small group, while the other two belong to the large group. Transient expression of 35S:PvPAPs-GFP on onion epidermal cells verified the variations of subcellular localization among PvPAPs, suggesting functional diversities of PvPAPs in common bean. Quantitative PCR results showed that most PvPAPs were up-regulated by phosphate (Pi) starvation. Among them, the expression of the small group PvPAPs responded more to Pi starvation, especially in the roots of G19833, the P-efficient genotype. However, only overexpressing PvPAP1 and PvPAP3 could result in significantly increased utilization of extracellular dNTPs in the transgenic bean hairy roots. Furthermore, overexpressing PvPAP3 in Arabidopsis enhanced both plant growth and total P content when dNTPs were supplied as the sole external P source. CONCLUSIONS: The results suggest that PvPAPs in bean varied in protein structure, response to P deficiency and subcellular localization. Among them, both PvPAP1 and PvPAP3 might function as utilization of extracellular dNTPs

    Study on the Road Traffic Survey System Based on Micro-ferromagnetic Induction Coil Sensor

    No full text
    Road traffic information is the basis of road traffic management and control. Due to the special design of the sensor coil and ferromagnetic core, traffic survey system which uses micro ferromagnetic inductive coil vehicle detector, not only has the features of small size, simple installation and little road surface damage, but also has the advantages of output signal strength, simple signal processing circuit and obvious characteristics for output waveform corresponding vehicle feature. Based on the introduction of the sensor working principle, the construction of hardware and signal processing circuit for the traffic survey system is described in detail in the paper. Combined with the characteristics of the sensor output waveform, adaptive nearest neighbor clustering RBF neural network algorithm used to classify the vehicles is proposed and verified by experimental method. The result has a high vehicle classification rate and demonstrates the feasibility of the system

    High Throughput and Acceptance Ratio Multipath Routing Algorithm in Cognitive Wireless Mesh Network

    No full text
    The link failure due to the secondary users exiting the licensed channels when primary users reoccupy the licensed channels is very important in cognitive wireless mesh networks (CWMNs). A multipath routing and spectrum allocation algorithm based on channel interference and reusability with Quality of Service (QoS) constraints in CWMNs (MRIR) was proposed. Maximizing the throughput and the acceptance ratio of the wireless service is the objective of the MRIR. First, a primary path of resource conservation with QoS constraints was constructed, then, a resource conservation backup path based on channel interference and reusability with QoS constraints was constructed. The MRIR algorithm contains the primary path routing and spectrum allocation algorithm, and the backup path routing and spectrum allocation algorithm. The simulation results showed that the MRIR algorithm could achieve the expected goals and could achieve a higher throughput and acceptance ratio

    Establishment of a selective evaluation method for DPP4 inhibitors based on recombinant human DPP8 and DPP9 proteins

    Get PDF
    Dipeptidyl peptidase 4 (DPP4) is recognised as an attractive anti-diabetic drug target, and several DPP4 inhibitors are already on the market. As members of the same gene family, dipeptidyl peptidase 8 (DPP8) and dipeptidyl peptidase 9 (DPP9) share high sequence and structural homology as well as functional activity with DPP4. However, the inhibition of their activities was reported to cause severe toxicities. Thus, the development of DPP4 inhibitors that do not have DPP8 and DPP9 inhibitory activity is critical for safe anti-diabetic therapy. To achieve this goal, we established a selective evaluation method for DPP4 inhibitors based on recombinant human DPP8 and DPP9 proteins expressed by Rosetta cells. In this method, we used purified recombinant 120 kDa DPP8 or DPP9 protein from the Rosetta expression system. The optimum concentrations of the recombinant DPP8 and DPP9 proteins were 30 ng/mL and 20 ng/mL, respectively, and the corresponding concentrations of their substrates were both 0.2 mmol/L. This method was highly reproducible and reliable for the evaluation of the DPP8 and DPP9 selectivity for DPP4 inhibitor candidates, which would provide valuable guidance in the development of safe DPP4 inhibitors

    A cell-based fluorescent glucose transporter assay for SGLT2 inhibitor discovery

    Get PDF
    The sodium/glucose cotransporter 2 (SGLT2) is responsible for the majority of glucose reabsorption in the kidney, and currently, SGLT2 inhibitors are considered as promising hypoglycemic agents for the treatment of type 2 diabetes mellitus. By constructing CHO cell lines that stably express the human SGLT2 transmembrane protein, along with a fluorescent glucose transporter assay that uses 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]2-deoxyglucose (2-NBDG) as a glucose analog, we have developed a nonradioactive, cell-based assay for the discovery and characterization of SGLT2 inhibitors

    Corrosion Damage Mechanism of TiN/ZrN Nanoscale Multilayer Anti-Erosion Coating

    No full text
    TiN/ZrN multilayers can effectively improve the erosion resistance of metals, particularly titanium alloys employed in aero engines. To explore the corrosion damage mechanism of TiN/ZrN nanoscale multilayers (nanolaminate), a novel [TiN/ZrN]100 nanolaminate coating was deposited on Ti-6Al-4V alloys by multi-arc ion plating method. Salt spray corrosion tests and hot corrosion experiment were carried out to evaluate the corrosion resistance of the coating. The corrosion and damage mechanisms were explored with the help of detailed microstructure, phase composition and element distribution characterizations. The salt spray corrosion tests showed that the [TiN/ZrN]100 nanolaminate coating possessed good corrosion resistance, which protected substrate against the corrosion. The low temperature hot corrosion tests showed that the oxidation occurred on the surface of the coating, which improved the oxidation resistance of the sample. However, the oxidized droplets squeezed the coating, and destroyed the oxidized layers. As a result, the coating was peeled off from the substrate. The research highlights the corrosion resistance of the novel TiN/ZrN nanolaminate coating and offers a support for their application in engine compressor blade
    corecore