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Abstract Dipeptidyl peptidase 4 (DPP4) is recognised as an attractive anti-diabetic drug target, and several
DPP4 inhibitors are already on the market. As members of the same gene family, dipeptidyl peptidase 8
(DPP8) and dipeptidyl peptidase 9 (DPP9) share high sequence and structural homology as well as
functional activity with DPP4. However, the inhibition of their activities was reported to cause severe
toxicities. Thus, the development of DPP4 inhibitors that do not have DPP8 and DPP9 inhibitory activity is
critical for safe anti-diabetic therapy. To achieve this goal, we established a selective evaluation method for
DPP4 inhibitors based on recombinant human DPP8 and DPP9 proteins expressed by Rosetta cells. In this
method, we used purified recombinant 120 kDa DPP8 or DPP9 protein from the Rosetta expression system.
The optimum concentrations of the recombinant DPP8 and DPP9 proteins were 30 ng/mL and 20 ng/mL,
respectively, and the corresponding concentrations of their substrates were both 0.2 mmol/L. This method
was highly reproducible and reliable for the evaluation of the DPP8 and DPP9 selectivity for DPP4 inhibitor
candidates, which would provide valuable guidance in the development of safe DPP4 inhibitors.
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1. Introduction

Dipeptidyl peptidase 8 (DPP8) and dipeptidyl peptidase 9 (DPP9)
belong to the S9b gene family (also called the ‘DPP4 gene family’),
which share sequence homology, a similar tertiary structure and
functional activity with dipeptidyl peptidase 4 (DPP4)1. Considering
the post-proline dipeptidyl aminopeptidase activity of the S9b gene
family, various neuropeptides, chemokines, and peptide hormones
can be their natural substrates and be involved in their protein
degradation2. Therefore, many of these enzymes have been found to
be effective drug targets. For example, DPP4 is a target of type 2
diabetes. By extending the half-life of endogenous glucagon-like
peptide-1 (GLP-1), DPP4 inhibitors can induce insulin secretion,
lower blood glucose and HbA1C levels, reduce the apoptosis and
improve the proliferation of β cells. Five DPP4 inhibitors, sitagliptin,
valdagliptin, saxaglptin, alogliptin and linagliptin, have been on the
market3.

The safety or side effects of DPP4 inhibitors are the key points
of consideration during drug discovery, mainly due to the
similarity of DPP8/9 with DPP4. The amino acid sequences of
DPP8 and DPP9 are highly identical to DPP44,5. All three proteins
also share similar structures, consisting of an N-terminal, eight-
bladed β-propeller, C-terminal α/β hydrolase domain6, a catalytic
triad (Ser–Asp–His) and a conserved Glu motif (Glu–Glu)7.
Currently, little is known about the endogenous substrates and
biological functions of DPP8 and DPP9, but some studies have
indicated that selective DPP8 and DPP9 inhibitors may cause
severe toxicities, such as thrombocytopenia, alopecia, reticulocy-
topoenia, enlarged lymph nodes, splenomegaly, multiorgan histo-
pathological changes and mortality in rats and gastrointestinal
toxicity in dogs. Inhibition of DPP8 and DPP9 activities may
attenuate T cells activation and proliferation in vitro8. So without
DPP8 and DPP9 inhibitory activity is very important to the
development of a DPP4 inhibitor as an anti-diabetic agent.

This study was to establish an evaluation method based on
recombinant human DPP8 and DPP9 proteins to detect the
selectivity of DPP4 inhibitor candidates, which would provide
valuable guidance in the development of safe DPP4 inhibitors.
2. Materials and methods

2.1. Chemicals and reagents

The recognised dipeptidyl peptidase (DPP) substrate Gly-Pro-p-
nitroanilide and DPP4 enzyme were purchased from Sigma
(Missouri, USA). The VigoScript first strand cDNA synthesis kit
was a product of Vigorous (Beijing, China). Rosetta competent
cells were obtained from TransGen (Beijing, China). Restriction
enzymes were purchased from Takara (Dalian, China). Nickel
affinity columns, Trizol reagent and DNA polymerase were
obtained from Invitrogen (Shanghai, China). The plasmid vector
pET32-a(þ) was a product of Novagen (Shanghai, China). The
anti-His antibody was purchased from Abmart (Shanghai, China).
The DPP inhibitor compounds, sitagliptin and UAMC00132 were
provided by Prof. Haihong Huang.

2.2. Cloning and construction of recombinant DPP8 and DPP9

The full-length fragments of human DPP8 and DPP9 were obtained via
reverse-transcription (RT)–PCR technology from HeLa and HepG2
cells, respectively. Primers for human DPP8 (GenBank ID: AF221634;
DPP8-Forward-Hind III 50-ATCAAGCTTGCCACCATGGCAGC-
AGCAATG-30 and DPP8-Reverse-Sal I 50-ATCGTCGACTTATA-
TCACTTTTAGAGCAGCAATACG-30) and DPP9 (GenBank ID:
AF374518; DPP9-Forward-BamH I 50-ATCGGATCCGCCACCAT-
GGGGAAGGTTAAG-30 and DPP9-Reverse-Xho I 50-ATCCTCGA-
GTCAGAGGTATTCCTGTAGAAAGTGCAG-30) were designed
with restriction enzyme sites for directional cloning. The PCR was
performed as follows: DNA denaturation at 94 1C for 10 min, then 35
cycles (94 1C for 10 s, 65.8 1C for 30 s, 72 1C for 3 min) and a final
extension at 72 1C for 10 min. The Hind III/Sal I fragment of DPP8
was subcloned into the Hind III and Xho I digested pET32-a(þ)
expression vector, generating plasmid pET32-a(þ)–DPP8. Meanwhile,
the BamH I/Xho I fragment of DPP9 was subcloned into the BamH I
and Xho I digested pET32-a(þ) expression vector, generating plasmid
pET32-a(þ)–DPP9. Finally, their sequences were verified. pET32-a
(þ)–DPP8 and pET32-a(þ)–DPP9 were expected to express recombi-
nant DPP8 and DPP9 proteins containing 882 and 892 amino acids,
respectively, with additional His6, S and Trx tags in the N-terminus.

2.3. Prokaryotic expression, protein purification and Western blot

Rosetta competent cells transformed with the pET32-a(þ)–DPP8
plasmid were cultured in LB medium containing 50 μg/mL ampicillin
at 37 1C. Protein expression was induced by isopropyl β-D-thiogalac-
topyranoside (IPTG) (1 mmol/L) at 16 1C for 20 h, until the OD600

value of the LB medium reached 0.6. The cells were harvested at
6000 rpm for 5 min and incubated in lysozyme buffer (2 mg/mL
lysozyme, 100 mmol/L Tris–HCl pH 7.4, 100 mmol/L NaCl) for
40 min on ice. This was followed by centrifugation at 12,000 rpm for
10 min and filtration through a 0.45 μm filter. The filtrate was purified
with a nickel affinity column as follow: the column was equilibrated
with binding buffer (20 mmol/L Tris–HCl pH 7.9, 10 mmol/L
imidazole, 0.5 mol/L NaCl), and then the supernatant was passed
through the column. Subsequently, binding buffer was used to wash
the column, followed by elution buffer (20 mmol/L Tris–HCl pH 7.9,
500 mmol/L imidazole, 0.5 mol/L NaCl). All procedures were done at
4 1C. The enzyme activities of the eluted fractions were monitored, and
the active fractions were pooled and analysed using sodium dodecyl
sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and Western
blot. The expression and purification procedures of DPP9 were the
same as DPP8.

2.4. Determination of the optimum concentrations of the substrate
and purified recombinant proteins

To determine the optimum concentrations of the substrate and
purified recombinant proteins, the assay was performed with
different concentrations of DPP8 or DPP9 protein (0–60 ng/mL)
and a concentration range of Gly-Pro-p-nitroanilide (0–0.5 mmol/
L) in HEPES buffer (pH 7.05) in a final volume of 100 mL. The
change in absorbance at 405 nm was kinetically monitored every
10 min for 120 min at 37 1C.

2.5. DPP selectivity evaluation based on DPP8/9 and DPP4
inhibitor screening method

2.5.1. DPP selectivity evaluation based on DPP8/9 inhibition
assays
For the practicality and applicability of the inhibition assays, the
proven DPP4 inhibition assay was referenced, which indicated the
changes of OD values were 0.1–0.2 in 60 min. According to the
optimised concentration detection results described above, the final
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concentrations of test compounds and Gly-Pro-p-nitroanilide were
chosen to be 10 μmol/L and 0.2 mmol/L, respectively; and the
concentrations of DPP8 and DPP9 were 30 ng/mL and 20 ng/mL,
respectively. The change in absorbance at 405 nm was monitored
for 60 min at 37 1C. Distilled water was used as a negative control.
The percentage of inhibition was calculated as shown below.

Inhibition (%)¼ (ΔOD60-0 of control�ΔOD60-0 of test)/ΔOD60-0

of control� 100%

2.5.2. The screening method of DPP4 inhibitor
The test well contained 10 mL compound solution (diluted to the
concentration of 10 mmol/L) and 50 mL DPP4 solution (2 mU/mL
in 50 mmol/L Tris–HCl buffer, pH 8.0) in a 96-well plate. The
enzyme reaction was started by addition of 40 mL Gly-Pro-p-
nitroanilide solution (0.26 mmol/L, in HEPES buffer, pH 7.05).
The change in absorbance at 405 nm was monitored for 60 min at
37 1C. Compound solution was replaced by the distilled water in
the negative control well. The percent of inhibition was calculated
as above.

Two different DPP inhibitors, sitagliptin and UAMC00132,
were used to confirm the specific inhibition of DPP8/9 and DPP4.

2.6. Statistical analysis

All values were presented as mean7S.E.M. The Sigma Plot
software was used for data analysis.
3. Results

3.1. Construction of prokaryotic DPP8/9 expression plasmids

Using RT-PCR, we obtained 2649 bp and 2679 bp fragments of
DPP8 and DPP9, respectively, with extra primer bases (Fig. 1A).
Using the additional restriction sites, the DNA fragments were
successfully inserted into the pET32-a(þ) (�5,900 bp) plasmid
and identified by restriction digestion (Fig. 1B and C) and
sequencing.

3.2. Protein expression, purification and identification

The recombinant human DPP8 and DPP9 proteins were success-
fully expressed in the Rosetta cells induced by IPTG (1 mmol/L)
and analysed by SDS-PAGE. The corresponding bands of DPP8
Figure 1 Identification of the recombinant plasmids by restriction digesti
DPP8; Line 2: DPP9. (B) Identification of the recombinant pET32-a(þ)–DP
Identification of the recombinant pET32-a(þ)–DPP9 plasmid. M: DNA m
and DPP9 were both at approximately 120 kDa (Fig. 2A and C).
The recombinant DPP8 and DPP9 proteins with His6-tags were
purified on a nickel affinity column and then dissolved in the
neutral Tris buffer. The soluble, purified target proteins were
also approximately 120 kDa (Fig. 2B and D), which was con-
firmed by Western blot analysis using an anti-His antibody
(Fig. 2E and F).
3.3. Determination of the optimum concentrations of DPP8/9
and substrate in a direct enzyme inhibition assay

The recombinant human DPP8 and DPP9 proteins were found to
display specific dipeptidyl peptidase activities similar to DPP4, but
the enzyme kinetic characteristics were unknown. By monitoring
the increasing absorbance rate at 405 nm, concentration-activity
experiments of recombinant DPP8/9 were performed. The experi-
ment showed that the reactivity of recombinant DPP9 was higher
than DPP8. To determine the reliable and practical reaction
conditions that were suitable for the soluble DPP8 and DPP9
activity inhibition assay, the proven DPP4 inhibition assay was
referenced, which indicated the changes of OD values were 0.1–
0.2 in 60 min. The experiment indicated that the optimum
concentrations of the purified recombinant DPP8 and DPP9
proteins were 30 ng/mL and 20 ng/mL for 60 min, respectively,
with 0.5 mmol/L substrate (Fig. 3A and B), and the optimum
substrate concentration for both DPP8 (30 ng/mL) and DPP9
(20 ng/mL) was 0.2 mmol/L (Fig. 3C and D).
3.4. DPP inhibition selectivity evaluation based on a direct
DPP8/9 and DPP4 enzyme inhibition assay

Using the recombinant DPP8/9 activity assay with the above
optimised reaction conditions and the DPP4 activity assay method,
the effects of two reported DPP inhibitors on DPP8/9 and DPP4
activities were determined. DPP8/9 inhibitor UAMC00132
(10 μmol/L) could, while DPP4 inhibitor sitagliptin (10 μmol/L)
could not, inhibit DPP8 and DPP9 activities. Meanwhile, sitagliptin
strongly inhibited DPP4 activity strongly, while UAMC00132 only
slightly inhibited DPP4 activity (Fig. 4), which indicated that the
selective evaluation method was established to evaluate the DPP8
and DPP9 selectivity of DPP4 inhibitor candidates.
on. (A) RT-PCR of human DPP8 and DPP9. M: DNA marker; Line 1:
P8 plasmid. M: DNA marker; Line 1: pET32-a(þ)–DPP8 plasmid. (C)
arker; Line 1: pET32-a(þ)–DPP9 plasmid.



Figure 2 SDS-PAGE and Western blot analyses of recombinant DPP8 and DPP9 proteins. (A) Expression of DPP8 protein. M: protein marker; Line 1:
negative control without induction by IPTG; Line 2: the expression of recombinant DPP8 protein induced by IPTG; (B) Purification of DPP8 protein. M:
protein marker; Line 1: recombinant DPP8 protein purified using a nickel affinity column. (C) Expression of DPP9 protein. M: protein marker; Line 1:
negative control without induction by IPTG; Line 2: the expression of recombinant DPP9 protein induced by IPTG; (D) Purification of DPP9 protein. M:
protein marker; Line 1: recombinant DPP9 protein purified using a nickel affinity column. (E) Western blot analysis of purified DPP8 protein using an anti-
His antibody. (F) Western blot analysis of purified DPP9 protein using an anti-His antibody. The arrow marks the corresponding recombinant protein at
approximately 120 kDa.

Figure 3 Determination of the optimum concentrations of the purified recombinant DPP8/9 protein and substrate. The purified recombinant DPP8 (A) and
DPP9 (B) proteins, with a range of concentrations from 0 to 60 ng/mL and 0.5 mmol/L substrate; The substrate with different concentrations, from 0.05 to
0.5 mmol/L at 30 ng/mL DPP8 (C) and 20 ng/mL DPP9 (D).
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Figure 4 Inhibition of recombinant DPP8/9 and DPP4 activities by UAMC00132 and Sitagliptin. Chemical structure of UAMC00132 (A) and
sitagliptin (B). (C) The DPP8/9 and DPP4 inhibitory activities of sitagliptin and UAMC00132. In DPP8/9 inhibition assays, 30 ng/mL purified
DPP8 protein or 20 ng/mL purified DPP9 protein and 0.2 mmol/L substrate were used, and in DPP4 inhibition assay, 1 mU/mL DPP4 protein and
0.1 mmol/L substrate were used. The result was presented as the percentage of enzyme activity inhibition.
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4. Discussion

The two DPP4 homologues, DPP8 and DPP9, were identified in
the years 20004 and 20025. Especially Lankas et al.8 found that
the inhibition of DPP8 and DPP9 activities could cause severe
toxicities. Since then, DPP8 and DPP9 have become popular
issues, and a great deal of attentions have been focused on the
genes, substrates, inhibitors, structures and functions of these
peptidases. In this study, we established a selective evaluation
method of DPP4 inhibitors based on the recombinant human DPP8
and DPP9 proteins, which would facilitate and accelerate finding
potent and highly selective DPP4 inhibitors.

We used Rosetta cells to express the full length 882 amino acid
DPP8 (DPP8882aa) and 892 amino acid DPP9 (DPP9892aa) proteins
with additional His6, S and Trx tags in the N-terminus and with or
without another His6-tag in the C-terminus. In these recombinant
variants, we found that only the full length DPP8 and DPP9
proteins without the C-terminus His6-tag had enzymatic activities,
which was consistent with a report by Bjelke9. Some reports
showed that the purified recombinant DPP8 and DPP9 proteins
were monomeric when C-terminus tags were present, but when
tags were in the N-terminus, the protein could be dimeric4,7,9.
As dimerisation was shown to be essential for the peptidase
activity, we considered that the C-terminus His6-tag of recombi-
nant DPP8/9 may prevent dimerisation and cause a loss of activity.
Conversely, other studies have reported active DPP9 with a
C-terminus His6-tag expressing in a eukaryotic system, such as
Pichia pastoris and Spodoptera frugiperda 9 (Sf9) cells, and
assumed that the presence of post-translational modifications in
mammalian cells may influence the activity of recombinant
DPP910–14. In this study, active recombinant DPP8/9 with an
N-terminal His6-tag, first expressing in a prokaryotic system,
showed practical and suitable activity for use in a DPP
inhibitor assay.

The Glu–Glu motif in DPP4 (Glu205–Glu206) was also present
in DPP8 (Glu256–Glu257) and DPP9 (Glu277–Glu278), which was
very important to the peptidase activity and substrate entry, and
any mutation in this motif would abolish the peptidase activity7,15.
Some reports also suggested that the α/β hydrolase domains in
both the N- and C-terminus of DPP8 and DPP9 proteins were
pivotal to the enzymatic activity and to maintain an intact structure
and removing these domains would abolish the enzymatic
activity7. We also expressed the truncated Δ659–882 amino acid
of DPP8 (DPP8Δ659–882aa) with additional His6, S and Trx tags in
the N-terminus. We further confirmed that the lack of the Glu–Glu
motif and the α/β hydrolase domain of the N-terminus completely
abolished enzymatic activity, even though DPP8Δ659–882aa con-
tained the catalytic domain.

In summary, we had established a selective evaluation method for
DPP4 inhibitor candidates based on the recombinant human DPP8
and DPP9 proteins. This method was highly reproducible and reliable
and would provide valuable guidance in the development of
promising selective and safe DPP4 inhibitors. We had used the
method to evaluate a number of DPP4 inhibitor candidates.

Acknowledgements

We greatly appreciate Prof. Haihong Huang and Dr. Bei Han for
the chemical synthesis of UAMC00132 and sitagliptin. This work
was supported by a fund from National Mega-project for Innova-
tive Drugs (2012ZX09301002-004, China).

References

1. Rosenblum J, Kozarich JW. Prolyl peptidases: a serine protease
subfamily with high potential for drug discovery. Curr Opin Chem
Biol 2003;7:496–504.

2. Chen YS, Chien CH, Goparaju CM, Hsu JT, Liang PH, Chen X.
Purification and characterization of human prolyl dipeptidase DPP8 in
Sf9 insect cells. Protein Expr Purif 2004;35:142–6.

3. Deacon CF. Dipeptidyl peptidase-4 inhibitors in the treatment of type 2
diabetes: a comparative review. Diabetes Obes Metab 2011;13:7–18.

4. Abbott CA, Yu DM, Woollatt E, Sutherland GR, Mccaughan GW,
Gorrell MD. Cloning, expression and chromosomal localization of a
novel human dipeptidyl peptidase (DPP) IV homolog, DPP8. Eur J
Biochem 2000;267:6140–50.

http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref1
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref1
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref1
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref2
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref2
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref2
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref3
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref3
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref4
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref4
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref4
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref4


J. Liu et al.140
5. Olsen C, Wagtmann N. Identification and characterization of human DPP9,
a novel homologue of dipeptidyl peptidase IV. Gene 2002;299:185–93.

6. Abbott CA, Yu DM, McCaughan GW, Gorrell MD. Postproline-
cleaving peptidases having DP IV like enzyme activity. Adv Exp Med
Biol 2000;477:103–9.

7. Ajami K, Abbott CA, Obradovic M, Gysbers V, Kahne T, McCaughan
GW, et al. Structural requirements for catalysis, expression, and dimer-
ization in the CD26/DPIV gene family. Biochemistry 2003;42:694–701.

8. Lankas GR, Leiting B, Roy RS, Eiermann GJ, Beconi MG, Biftu T,
et al. Dipeptidyl peptidase IV inhibition for the treatment of type 2
diabetes: potential importance of selectivity over dipeptidyl peptidases
8 and 9. Diabetes 2005;54:2988–94.

9. Bjelke JR, Christensen J, Nielsen PF, Branner S, Kanstrup AB,
Wagtmann N, et al. Dipeptidyl peptidases 8 and 9: specificity and
molecular characterization compared with dipeptidyl peptidase IV. J
Biochem 2006;396:391–9.

10. Ajami K, Abbott CA, McCaughan GW, Gorrell MD. Dipeptidyl peptidase
9 has two forms, a broad tissue distribution, cytoplasmic localization and
DPIV-like peptidase activity. Biochim Biophys Acta 2004;1679:18–28.
11. Burkey BF, Hoffmann PK, Hassiepen U, Trappe J, Juedes M, Foley
JE. Adverse effects of dipeptidyl peptidases 8 and 9 inhibition in
rodents revisited. Diabetes Obes Metab 2008;10:1057–61.

12. Lee HJ, Chen YS, Chou CY, Chien CH, Lin CH, Chang GG, et al.
Investigation of the dimer interface and substrate specificity of prolyl
dipeptidase DPP8. J Bio Chem 2006;281:38653–62.

13. Qi SY, Riviere PJ, Trojnar J, Junien JL, Akinsanya KO. Cloning
and characterization of dipeptidyl peptidase 10, a new member of
an emerging subgroup of serine proteases. J Biochem 2003;373:
179–89.

14. Ajami K, Pitman MR, Wilson CH, Paek J, Menz RI, Starr EA,
et al. Stromal cell-derived factors 1α and 1β, inflammatory
protein-10 and interferon-inducible T cell chemo-attractant are
novel substrates of dipeptidyl peptidase 8. FEBS Lett 2008;582:
819–25.

15. Abbott CA, McCaughan GW, Gorrell MD. Two highly conserved
glutamic acid residues in the predicted L propeller domain of
dipeptidyl peptidase IV are required for its enzyme activity. FEBS
Lett 1999;458:278–84.

http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref5
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref5
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref6
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref6
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref6
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref7
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref7
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref7
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref8
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref8
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref8
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref8
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref9
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref9
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref9
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref9
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref10
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref10
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref10
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref11
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref11
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref11
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref12
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref12
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref12
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref13
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref13
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref13
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref13
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref14
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref14
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref14
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref14
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref14
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref15
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref15
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref15
http://refhub.elsevier.com/S2211-3835(13)00112-3/sbref15

	Establishment of a selective evaluation method for DPP4 inhibitors based on recombinant human DPP8 and DPP9 proteins
	Introduction
	Materials and methods
	Chemicals and reagents
	Cloning and construction of recombinant DPP8 and DPP9
	Prokaryotic expression, protein purification and Western blot
	Determination of the optimum concentrations of the substrate and purified recombinant proteins
	DPP selectivity evaluation based on DPP8/9 and DPP4 inhibitor screening method
	DPP selectivity evaluation based on DPP8/9 inhibition assays
	The screening method of DPP4 inhibitor

	Statistical analysis

	Results
	Construction of prokaryotic DPP8/9 expression plasmids
	Protein expression, purification and identification
	Determination of the optimum concentrations of DPP8/9 and substrate in a direct enzyme inhibition assay
	DPP inhibition selectivity evaluation based on a direct DPP8/9 and DPP4 enzyme inhibition assay

	Discussion
	Acknowledgements
	References




