40 research outputs found

    Photopolymerized maleilated chitosan/methacrylated silk fibroin micro/nanocomposite hydrogels as potential scaffolds for cartilage tissue engineering

    Get PDF
    Hydrogels composed of natural materials exhibit great application potential in artificial scaffolds for cartilage repair as they can resemble the extracellular matrices of cartilage tissues comprised of various glycosaminoglycan and collagen. Herein, the natural polymers with vinyl groups, i.e. maleilated chitosan (MCS) and methacrylated silk fibroin (MSF) micro/nanoparticles, were firstly synthesized. The chemical structures of MCS and MSF micro/nanoparticles were investigated using Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H NMR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Then MCS/MSF micro/nanocomposite hydrogels were prepared by the photocrosslinking of MCS and MSF micro/nanoparticles in aqueous solutions in the presence of the photoinitiator Darocur 2959 under UV light irradiation. A series of properties of the MCS/MSF micro/nanocomposite hydrogels including rheological property, equilibrium swelling, sol content, compressive modulus, and morphology were examined. The results showed that these behaviors could be tunable via the control of MSF content. When the MSF content was 0.1%, the hydrogel had the compressive modulus of 0.32±0.07MPa, which was in the range of that of articular cartilage. The in vitro cytotoxic evaluation and cell culture of the micro/nanocomposite hydrogels in combination with mouse articular chondrocytes were also investigated. The results demonstrated that the micro/nanocomposite hydrogels with TGF-β1 was biocompatible to mouse articular chondrocytes and could support cells attachment well, indicating their potential as tissue engineering scaffolds for cartilage repair.This study was supported by National Natural Science Foundation of China (Grant No. 51203123, 51403165, 51503161) and the National Key Research and Development Program of China (No.2016YFA0101102)

    Photocrosslinked methacrylated poly(vinyl alcohol)/hydroxyapatite nanocomposite hydrogels with enhanced mechanical strength and cell adhesion

    No full text
    Poly(vinyl alcohol) (PVA) hydrogels with high water content, good load‐bearing property, low frictional behavior as well as excellent biocompatibility have been considered as promising cartilage replacement materials. However, the lack of sufficient mechanical properties and cell adhesion are two critical barriers for their application as cartilage substitutes. To address these problems, herein, methacrylated PVA with low degree of substitution of methacryloyl group has been synthesized first. Then, methacrylated PVA‐glycidyl methacrylate/hydroxyapatite (PVA‐GMA/Hap) nanocomposite hydrogels have been developed by the photopolymerization approach subsequently. Markedly, both pure PVA‐GMA hydrogel and PVA‐GMA/Hap nanocomposite hydrogels exhibit excellent performance in compressive tests, and they are undamaged during compressive stress–strain tests. Moreover, compared to pure PVA‐GMA hydrogels, 8.5‐fold, 7.4‐fold, and 14.2‐fold increase in fracture stress, Young's modulus and toughness, respectively, can be obtained for PVA‐GMA/Hap nanocomposite hydrogels with 10 wt % Hap nanoparticles. These enhancements can be ascribed to the intrinsic property of PVA‐GMA and strong hydrogen bonding interactions between PVA‐GMA chain and Hap nanoparticles. More interestingly, significant improvement in the cell adhesion can also be successfully achieved by incorporation of Hap nanoparticles. These biocompatible nanocomposite hydrogels have great potential to be used as cartilage substitutes.This study was supported by National Natural Science Foundation of China (grant no. 51203123), the National Key Research and Development Program of China (no. 2016YFA0101102). P. Xiao acknowledges funding from the Australian Research Council Future Fellowship (FT170100301)

    Fast gelling and non-swellable photopolymerized poly (vinyl alcohol) hydrogels with high strength

    No full text
    Despite their great potential in biomedical applications, the use of hydrogels has been severely limited by their swelling property and weak strength under physiological conditions. Herein, we developed nonswelling and high-strength hydrogels by a facile one-step thiol-acrylate photopolymerization of methacrylated poly (vinyl alcohol) and thiol-terminated poly (vinyl alcohol) for the first time. The hydrogels can gel rapidly within 7 s in this approach. By controlling crosslinking density and hydrophilic/hydrophobic balance of cross-linking hydrogel networks, the properties of hydrogels can be tunable and can even exhibit an excellent nonswelling behaviour under physiological conditions. Notably, the outstanding mechanical property with a compressive strength of 7.0 MPa at ~95% strain as well as no damage through compressive stress-strain tests in the allowable scope of tensile tester can also be achieved. Moreover, the hydrogel is non-toxic to L929 cells, which is favorable for promising biomedical applications as implants and tissue engineering scaffolds.This study was supported by National Natural Science Foundation of China (Grant No. 51203123), the National Key Research and Development Program of China (No. 2016YFA0101102) and the Major Technological Innovation Program of Hubei Province (No. 2019AAA034), as well as Project of Wuhan Science and Technology Bureau (No. 2019010702011335). Y. Z. acknowledges support from Testing & Analysis Center, Wuhan Textile Universit

    Photocrosslinkable chitosan hydrogels and their biomedical applications

    No full text
    Chitosan is a bioactive macromolecule with a wide variety of applications due to its excellent biological properties such as biodegradability, biocompatibility, and antibacterial activity, and so forth. This highlight focuses on the preparation of photoactive chitosans, the formation of photocrosslinkable chitosan hydrogels, and the related photopolymerization mechanisms. Moreover, the great potential applications of photocrosslinkable chitosan hydrogels for human tissues are also discussed.This study was supported by National Natural Science Foundation of China (Grant No. 51203123), the National Key Research and Development Program of China (No. 2016YFA0101102). P. Xiao acknowledges funding from the Australian Research Council Future Fellowship (FT170100301)

    Photopolymerizable thiol-acrylate maleiated hyaluronic acid/thiol-terminated poly(ethylene glycol) hydrogels as potential in-situ formable scaffolds

    No full text
    Despite their potential in various biomedical applications, photocrosslinkable hyaluronate hydrogels have often been limited by weak formation and unsatisfied mechanical strength which can be attributed to insufficient substitution of photoactive groups on the hyaluronate backbone and the oxygen inhibition effect. In this study, a new approach for the production of hyaluronic acid (MHA) with high acrylate group substitution (i.e. 2.27) is developed. It is based on the reaction of sodium hyaluronate and maleic anhydride in dimethyl sulfoxide, which has never been reported previously. Furthermore, the thiol-acrylate photopolymerization approach is employed to prepare maleiated hyaluronic acid/thiol-terminated poly(ethylene glycol) (MHA/TPEG) hydrogels which can overcome the oxygen inhibition effect. And the hydrogels possess porous structures, high swelling ratio, and tunable degradation rate. Specifically, the hydrogels could gel quickly within 15 s and demonstrate improved stiff (G′ = 4100 Pa). The in vitro cytotoxic evaluation demonstrates that the hydrogels are cytocompatible to L929 cells. As a result, the in-situ formable hydrogel scaffolds exhibit great potential for medical applications

    Identification and Functional Analysis of Interleukin-1β in the Chinese Soft-Shelled Turtle Pelodiscus sinensis

    No full text
    Chinese soft-shelled turtle (Pelodiscus sinensis) is commercially cultured in East and Southeast Asia for its nutritional and medicinal values. In this study, we identified interleukin-1β (IL-1β) from Chinese soft-shelled turtle. The full-length cDNA of Pelodiscus sinensis IL-1β (tIL-1β) consists of 1529 base pairs with an 831-base-pair open reading frame, encoding 277 amino acids. The guanine-cytosine (GC) content in the coding sequence and 3’ untranslated region of tIL-1β is considerably higher than that of other vertebrates. Its mRNA expression level increased significantly during Aeromonas hydrophila infection. The tIL-1β lacks the typical IL-1β-converting enzyme (ICE) cut site found in mammalian IL-1β, but still could be cleaved by turtle caspase-1. By mutating the potential cleavage sites, we identified aspartic acid (Asp/D) 130 as the ICE cut site in tIL-1β. The peptide truncated at D130 was expressed using the baculovirus expression system; its bioactivity is confirmed by the ability to induce cyclooxygenase-2 (COX-2) and tIL-1β itself in peripheral blood monocytes. In conclusion, we characterized IL-1β from Chinese soft-shelled turtle and identified its D130 as a non-typical ICE cut size

    Porcine Circovirus 2 Deploys PERK Pathway and GRP78 for Its Enhanced Replication in PK-15 Cells

    No full text
    Porcine circovirus type 2 (PCV2) infection induces autophagy and apoptosis. These cellular responses could be connected with endoplasmic reticulum (ER) stress. It remains unknown if PCV2 induces ER stress and if autophagy or apoptosis is primary to PCV2 infection or secondary responses following ER stress. Here, we demonstrate that PCV2 triggered unfolded protein response (UPR) in PK-15 cells by activating the PERK/eIF2α pathway without concomitant activation of IRE1 or ATF6. Since ATF4 and CHOP were induced later than PERK/eIF2α, it is clear that persistent PCV2 infection could lead to selective activation of PERK via the PERK-eIF2α-ATF4-CHOP axis. Therefore, PERK activation could be part of the pro-apoptotic signaling via induced expression of CHOP by PCV2. Since PERK inhibition by GSK2606414 or RNA silencing or suppression of eIF2α dephosphorylation by salubrinal limited viral replication, we suppose that PCV2 deploys UPR to enhance its replication. Over-expression of GRP78 or treatment with tauroursodeoxycholic acid could enhance viral capsid expression and/or viral titers, indicating that these chaperones, endogenous or exogenous, could help correct folding of viral proteins. Our findings provide the first evidence that ER stress plays a role in the pathogenesis of PCV2 infection probably as part of autophagic and apoptotic responses

    The Different Effects of IFN-β and IFN-γ on the Tumor-Suppressive Activity of Human Amniotic Fluid-Derived Mesenchymal Stem Cells

    No full text
    Current studies have shown that type I or II interferon-modified mesenchymal stem cells have great potential for the application of tumor-targeted therapy, but the underlying mechanism remains largely elusive. Here, we compared the different effects of IFN-β and IFN-γ on the antitumor activity of human amniotic fluid-derived mesenchymal stem cells (AFMSCs) and revealed the potential mechanism. In detail, AFMSCs primed with IFN-β or IFN-β plus IFN-γ, not IFN-γ, inhibited the proliferation of cancer cells in an immunocompetent mouse H460 subcutaneous model, although they all inhibited the proliferation of cancer cells in an immunocompromised mouse H460 subcutaneous model. TRAIL expressed by IFN-β- or IFN-γ-primed AFMSCs specifically exerted the antitumor effect of AFMSCs. AFMSCs primed with IFN-γ highly expressed immunosuppressive molecule IDO1, but IFN-β counteracted the IFN-γ-initiated IDO1 expression. 1-MT (IDO1 inhibitor) decreased TRAIL, but increased IDO1 expression in AFMSCs primed with interferon. As a result, AFMSCs primed with IFN-β or IFN-γ had the antitumor activity, and 1-MT failed to enhance the antitumor effect of IFN-γ-primed AFMSC in vitro and in the immunocompromised mouse H460 subcutaneous model. Furthermore, the expression of TRAIL in AFMSCs was upregulated by apoptotic cancer cells and this positive feedback intensified the antitumor effects of IFNs-primed AFMSCs. The different target gene expression profiles of AFMSCs regulated by IFN-β and IFN-γ determined the different antitumor effects of IFN-β- and IFN-γ-primed AFMSCs on tumor cells. Our finding may help to explore a clinical strategy for cancer intervention by understanding the antitumor mechanisms of MSCs and interferon

    High-Performance Photopolymerized Poly(vinyl alcohol)/Silica Nanocomposite Hydrogels with Enhanced Cell Adhesion

    No full text
    Poly(vinyl alcohol) (PVA) hydrogels have been considered as promising implants for various soft tissue engineering applications because of their tissue-like viscoelasticity and biocompatibility. However, two critical barriers including lack of sufficient mechanical properties and non-tissue-adhesive characterization limit their application as tissue substitutes. Herein, PVA is methacrylated with ultralow degrees of substitution of methacryloyl groups to produce PVA-glycidyl methacrylate (GMA). Subsequently, the PVA-GMA/methacrylate-functionalized silica nanoparticle (MSi)-based nanocomposite hydrogels are developed via the photopolymerization approach. Interestingly, both PVA-GMA-based hydrogels and PVA-GMA/MSi-based nanocomposite hydrogels exhibit outstanding compressive properties, which cannot be damaged through compressive stressstrain tests in the allowable scope of a tensile tester. Moreover, PVA-GMA/MSi-based nanocomposite hydrogels demonstrate excellent tensile properties compared with neat PVA-GMA-based hydrogels, and 15-, 14-, and 24-fold increase in fracture stress, elastic modulus, and toughness, respectively, is achieved for the PVAGMA/MSi-based hydrogels with 10 wt % of MSi. These remarkable enhancements can be ascribed to the amount of long and flexible polymer chains of PVA-GMA and the strong interactions between the MSi and PVA-GMA chains. More interestingly, exciting improvements in the cell adhesion can also be successfully achieved by the incorporation of MSi nanoparticles.This study was supported by the National Key Research and Development Program of China (no. 2016YFA0101102) and Natural Science Foundation of Hubei Province (no. 2018CFB685). P.X. acknowledges funding from the Australian Research Council Future Fellowship (FT170100301)
    corecore