High-Performance Photopolymerized Poly(vinyl alcohol)/Silica Nanocomposite Hydrogels with Enhanced Cell Adhesion

Abstract

Poly(vinyl alcohol) (PVA) hydrogels have been considered as promising implants for various soft tissue engineering applications because of their tissue-like viscoelasticity and biocompatibility. However, two critical barriers including lack of sufficient mechanical properties and non-tissue-adhesive characterization limit their application as tissue substitutes. Herein, PVA is methacrylated with ultralow degrees of substitution of methacryloyl groups to produce PVA-glycidyl methacrylate (GMA). Subsequently, the PVA-GMA/methacrylate-functionalized silica nanoparticle (MSi)-based nanocomposite hydrogels are developed via the photopolymerization approach. Interestingly, both PVA-GMA-based hydrogels and PVA-GMA/MSi-based nanocomposite hydrogels exhibit outstanding compressive properties, which cannot be damaged through compressive stressstrain tests in the allowable scope of a tensile tester. Moreover, PVA-GMA/MSi-based nanocomposite hydrogels demonstrate excellent tensile properties compared with neat PVA-GMA-based hydrogels, and 15-, 14-, and 24-fold increase in fracture stress, elastic modulus, and toughness, respectively, is achieved for the PVAGMA/MSi-based hydrogels with 10 wt % of MSi. These remarkable enhancements can be ascribed to the amount of long and flexible polymer chains of PVA-GMA and the strong interactions between the MSi and PVA-GMA chains. More interestingly, exciting improvements in the cell adhesion can also be successfully achieved by the incorporation of MSi nanoparticles.This study was supported by the National Key Research and Development Program of China (no. 2016YFA0101102) and Natural Science Foundation of Hubei Province (no. 2018CFB685). P.X. acknowledges funding from the Australian Research Council Future Fellowship (FT170100301)

    Similar works

    Full text

    thumbnail-image