4 research outputs found
Modeling of GERDA Phase II data
The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground
laboratory (LNGS) of INFN is searching for neutrinoless double-beta
() decay of Ge. The technological challenge of GERDA is
to operate in a "background-free" regime in the region of interest (ROI) after
analysis cuts for the full 100kgyr target exposure of the
experiment. A careful modeling and decomposition of the full-range energy
spectrum is essential to predict the shape and composition of events in the ROI
around for the search, to extract a precise
measurement of the half-life of the double-beta decay mode with neutrinos
() and in order to identify the location of residual
impurities. The latter will permit future experiments to build strategies in
order to further lower the background and achieve even better sensitivities. In
this article the background decomposition prior to analysis cuts is presented
for GERDA Phase II. The background model fit yields a flat spectrum in the ROI
with a background index (BI) of cts/(kgkeVyr) for the enriched BEGe data set and
cts/(kgkeVyr) for the
enriched coaxial data set. These values are similar to the one of Gerda Phase I
despite a much larger number of detectors and hence radioactive hardware
components
Recommended from our members
Modeling of GERDA Phase II data
The GERmanium Detector Array (Gerda) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double-beta (0νββ) decay of 76Ge. The technological challenge of Gerda is to operate in a “background-free” regime in the region of interest (ROI) after analysis cuts for the full 100 kg·yr target exposure of the experiment. A careful modeling and decomposition of the full-range energy spectrum is essential to predict the shape and composition of events in the ROI around Qββ for the 0νββ search, to extract a precise measurement of the half-life of the double-beta decay mode with neutrinos (2νββ) and in order to identify the location of residual impurities. The latter will permit future experiments to build strategies in order to further lower the background and achieve even better sensitivities. In this article the background decomposition prior to analysis cuts is presented for Gerda Phase II. The background model fit yields a flat spectrum in the ROI with a background index (BI) of 16.04+0.78−0.85⋅10−3 cts/(keV·kg·yr) for the enriched BEGe data set and 14.68+0.47−0.52⋅10−3 cts/(keV·kg·yr) for the enriched coaxial data set. These values are similar to the one of Phase I despite a much larger number of detectors and hence radioactive hardware components
Design and first tests of the S
The new experiment S3 devoted to the study of reactor antineutrinos was designed and constructed as a common activity of IEAP CTU in Prague and JINR (Dubna). The S3 detector is a compact, highly segmented polystyrene-based scintillating detector composed of 80 detector elements with a gadolinium neutron converter between elements layers. A positron and a neutron are produced in an inverse beta decay initiated with an electron antineutrino in the detector. A modular multi-channel fast ADC was developed for the data acquisition for the whole 80-channel S3 detector and the 4-channel cosmic veto system. The detector meets very strict safety rules of nuclear power plants and can be installed in a chamber located immediately under the reactor. The close vicinity from the reactor enables to study neutrino properties with a higher efficiency, to investigate neutrino oscillations at short baselines and try to verify the hypothesis of a sterile neutrino. The details of the design and construction of the S3 detector, as well as properties of the modular multi-channel fast ADC system, and first tests of the device are presented