191 research outputs found

    Achievability of Nonlinear Degrees of Freedom in Correlatively Changing Fading Channels

    Get PDF
    A new approach toward the noncoherent communications over the time varying fading channels is presented. In this approach, the relationship between the input signal space and the output signal space of a correlatively changing fading channel is shown to be a nonlinear mapping between manifolds of different dimensions. Studying this mapping, it is shown that using nonlinear decoding algorithms for single input-multiple output (SIMO) and multiple input multiple output (MIMO) systems, extra numbers of degrees of freedom (DOF) are available. We call them the nonlinear degrees of freedom

    A Coordinate System for Gaussian Networks

    Get PDF
    This paper studies network information theory problems where the external noise is Gaussian distributed. In particular, the Gaussian broadcast channel with coherent fading and the Gaussian interference channel are investigated. It is shown that in these problems, non-Gaussian code ensembles can achieve higher rates than the Gaussian ones. It is also shown that the strong Shamai-Laroia conjecture on the Gaussian ISI channel does not hold. In order to analyze non-Gaussian code ensembles over Gaussian networks, a geometrical tool using the Hermite polynomials is proposed. This tool provides a coordinate system to analyze a class of non-Gaussian input distributions that are invariant over Gaussian networks

    Fundamental Limits of Communication with Low Probability of Detection

    Full text link
    This paper considers the problem of communication over a discrete memoryless channel (DMC) or an additive white Gaussian noise (AWGN) channel subject to the constraint that the probability that an adversary who observes the channel outputs can detect the communication is low. Specifically, the relative entropy between the output distributions when a codeword is transmitted and when no input is provided to the channel must be sufficiently small. For a DMC whose output distribution induced by the "off" input symbol is not a mixture of the output distributions induced by other input symbols, it is shown that the maximum amount of information that can be transmitted under this criterion scales like the square root of the blocklength. The same is true for the AWGN channel. Exact expressions for the scaling constant are also derived.Comment: Version to appear in IEEE Transactions on Information Theory; minor typos in v2 corrected. Part of this work was presented at ISIT 2015 in Hong Kon

    On Non-coherent MIMO Channels in the Wideband Regime: Capacity and Reliability

    Full text link
    We consider a multiple-input, multiple-output (MIMO) wideband Rayleigh block fading channel where the channel state is unknown to both the transmitter and the receiver and there is only an average power constraint on the input. We compute the capacity and analyze its dependence on coherence length, number of antennas and receive signal-to-noise ratio (SNR) per degree of freedom. We establish conditions on the coherence length and number of antennas for the non-coherent channel to have a "near coherent" performance in the wideband regime. We also propose a signaling scheme that is near-capacity achieving in this regime. We compute the error probability for this wideband non-coherent MIMO channel and study its dependence on SNR, number of transmit and receive antennas and coherence length. We show that error probability decays inversely with coherence length and exponentially with the product of the number of transmit and receive antennas. Moreover, channel outage dominates error probability in the wideband regime. We also show that the critical as well as cut-off rates are much smaller than channel capacity in this regime

    On capacity of optical communications over a lossy bosonic channel with a receiver employing the most general coherent electro-optic feedback control

    Get PDF
    We study the problem of designing optical receivers to discriminate between multiple coherent states using coherent processing receivers---i.e., one that uses arbitrary coherent feedback control and quantum-noise-limited direct detection---which was shown by Dolinar to achieve the minimum error probability in discriminating any two coherent states. We first derive and re-interpret Dolinar's binary-hypothesis minimum-probability-of-error receiver as the one that optimizes the information efficiency at each time instant, based on recursive Bayesian updates within the receiver. Using this viewpoint, we propose a natural generalization of Dolinar's receiver design to discriminate MM coherent states each of which could now be a codeword, i.e., a sequence of NN coherent states each drawn from a modulation alphabet. We analyze the channel capacity of the pure-loss optical channel with a general coherent-processing receiver in the low-photon number regime and compare it with the capacity achievable with direct detection and the Holevo limit (achieving the latter would require a quantum joint-detection receiver). We show compelling evidence that despite the optimal performance of Dolinar's receiver for the binary coherent-state hypothesis test (either in error probability or mutual information), the asymptotic communication rate achievable by such a coherent-processing receiver is only as good as direct detection. This suggests that in the infinitely-long codeword limit, all potential benefits of coherent processing at the receiver can be obtained by designing a good code and direct detection, with no feedback within the receiver.Comment: 17 pages, 5 figure
    • …
    corecore