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Abstract—A new approach toward the noncoherent commu-
nications over the time varying fading channels is presented.
In this approach, the relationship between the input signal
space and the output signal space of a correlatively changing
fading channel is shown to be a nonlinear mapping between
manifolds of different dimensions. Studying this mapping, it
is shown that using nonlinear decoding algorithms for single
input-multiple output (SIMO) and multiple input multiple o utput
(MIMO) systems, extra numbers of degrees of freedom (DOF)
are available. We call themthe nonlinear degrees of freedom.

Index Terms—Nonlinear degrees of freedom, Correlatively
Changing Channel, Mapping over manifolds, Nonlinear Decoding

I. I NTRODUCTION

Noncoherent communication systems in which neither the
transmitter nor the receiver know the fading coefficients are of
both theoretical and practical interest. The classical, intuitive
approach towards these systems working in high SNR regime
is training the receiver about the channel fading coefficients by
transmitting some fixed symbols over a small period of time.
The received signals at the training phase help the receiver
gain some information about the channel fading coefficients.
Knowing the fading coefficients, the receiver can recover the
message from the received signal at the transmission phase.

The model of wireless channel of interest here is a time-
varying, correlatively-changing fading channel. This is the
model introduced and discussed in [2].

In time-varying MIMO fading channels withnt transmitting
antennas andnr receiving antennas, the relationship between
the transmitted signal at timet, x[t] ∈ Cnt (the t-th column of
X ∈ Cnt×T ) and the noise-less received signal,y[t] ∈ Cnr (the
t-th column ofY ∈ Cnr×T ) is characterized by the following
equation

y[t] = H[t]x[t] (1)

The random matrixH[t] = [hm,n[t]] ∈ Cnr×nt contains the
fading coefficients at timet. The fading coefficient between
mth transmit antenna andnth receive antenna,hm,n[t], has
normal complex gaussian distribution form = 1, · · · , nt and
n = 1, · · · , nr. The fading coefficients between different pairs
of transmitters and receivers are independent of each other.

The noisy received signal at the receiver isYnoisy = Y+W

whereW ∈ Cnr×T is the random IID complex gaussian noise
at the receiver.

In the correlatively changing channel, fading coefficients
change correlatively over time. The correlation matrix of fad-
ing coefficients between a pair of transmitter and receiver in a
block of lengthT , denoted byKH, is of rankQ. Equivalently,
all the fading coefficients between a pair of transmitter and
receiver in a block of lengthT are linear combinations ofQ
statistically independent elements.Q < T is the rank of the
correlation matrix. The caseQ = 1 corresponds to the block
fading model in which the fading coefficients do not change
in the block of lengthT .

Define hm,n = [hm,n[1], · · · , hm,n[T ]] and KH =

E[h†
m,nhm,n] = A†A ∈ CT×T . The vector sm,n =

[s1m,n, · · · , sQm,n] contains theQ statistically independent ele-
ments whose linear combinations give the elements of vector
hm,n. The matrixA ∈ CQ×T , known at both Tx and Rx,
gives the linear equations which specify the fading coefficients
hm,n[t] from the independent, gaussian distributed numbers
sm,n as follows:

hm,n[t] =

Q
∑

q=1

Aq
[t]sqm,n (2)

DefiningAq
[t] to be the element inq-th row andt-th column

of matrix A.
In the high SNR regime of fading channels, the measure

of quality of interest is the degrees of freedom of the system.
The DOF is defined as the pre-log factor in the first order
approximation of capacity of the system in the high SNR
regime.

DOF= lim
SNR→∞

C(SNR)
logSNR

The DOF is interpreted as the number of dimensions in
which communications can take place as SNR is increasing.

The DOF of the system can be visualized in the following
dimension counting argument:

Start with generating particular initial realization of the
independent parameters of the channel (s0,m,n) and the trans-
mitted signals (X0). The noiseless received signal (Y0) would
be derived from equations (1) and (2). Note that in instantiating
the channel coefficients, only the independent parameters
s0,m,n are realized and the fading coefficients are derived using
equation (2).
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Altering the realization ofH[t] andX from H0[t] andX0

locally, we can moveY in a neighborhood aroundY0. This
neighborhood aroundY0 is a subset of thenrT dimensional
space reachable in the noisy version of received signalYnoisy ∈
Cnr×T .

To find the number of DOF, we categorize the dimensions
of the neighborhood reachable innoiseless received signalinto
three categories:

1) The dimensions of the neighborhood aroundY0 that is
reachable only by altering the realization ofH[t] from
H0[t]. Having fixedH0[t] and changingX from X0, Y
can not change fromY0 along these dimensions.

2) The dimensions of the neighborhood aroundY0 that is
reachable only by altering transmit signalX from X0.

3) The dimensions of the neighborhood aroundY0 that
is reachable by altering transmit signalX from X0 or
changingH[t] from H0[t]. Fixing either of transmitted
signal or channel realization and changing the other one,
Y can move fromY0 along these dimensions.

Section II gives a theorem which proves that in the high
SNR regime, communications can take place only along the
dimensions in the second category. It studies the mapping from
the input signal space to the signal space of the noise-less
received signal. It the states that if for someX0 in the input
signal space of the channel, there aD dimensional neighbor-
hood which is mapped to aD dimensional neighborhood in
the output signal space, and this mapping is one-to-one with
probability one in this neighborhood, then the DOF ofD is
achievable in this system.

Applying this argument to the flat fading channel withnt ≤
nr in which Y = HX, we are interested in the dimensions
of the space where the signalY can move by altering the
realizations ofH andX. Using the notation introduced in [1],
the subspace spanned by the rows of matrixY, ΩY, is the
same as linear subspace spanned by the rows of matrixX,
ΩX.

Changing the realization ofH does not changeΩY. Mean-
ing that ΩY specifies the dimensions inY which areonly
reachable by the transmitted signal. Thus, this subspace of
dimensionnt(T − nt) falls into the second category. The
representation of the rows of matrixY in the canonical basis
of ΩY, (CY ∈ Cnr×nt ) depends on bothCX ∈ Cnt×nt and
H ∈ Cnr×nt . Thus,nt × nt dimensions inCY are reachable
by both H and X which fall into the third category. And
nt(nr − nt) dimensions inCY are only reachable by the
different realizations ofH which fall into the first category.

Trying to apply the same dimension counting argument
to the received signals in correlatively changing channel,
we analyze the noiseless received signal fromn-th antenna.
yn ∈ C1×T is then-th row of matrixY.

yn =

nt
∑

m=1

Q
∑

q=1

sqm,nA
q diag(xm)

WhereAq is the qth row of matrixA and diag(xm) is a
T × T matrix whose diagonal elements are the transmitted

signals frommth antenna in a block of time.
We observe that the noiseless received signals from each

antenna in a block of time,yn’s, live in a subspaceFA(X) =
span{Aq diag(xm), for m = 1, · · · , nt andq = 1, · · · , Q}.
The nonlinear transformFA(X) is a mapping fromΩX to a
higherntQ dimensional subspace, parameterized by the matrix
A. In the regime of interest wherenr ≥ ntQ, with probability
oneΩY = FA(X). The subset of the output space which are
only reachable by the altering transmitted signal are a subset
of FA(X). But not allntQ(T − ntQ) dimensions ofFA(X)
are reachable by changingX. Studying this mapping over
the manifolds of different dimensions, a mathematical toolis
proposed which aims to count the number of dimensions in
FA(X) which are reachable only by alteringX, i.e., the DOF
of the system.

In this paper, decoding algorithms for SIMO and MIMO
systems in the regime whenntQ ≤ min(T − 1, nr) are
proposed. These algorithms achieve thent(1 − nt/T ) DOF
per symbol which is strictly larger than the one given in the
conjecture in [2]. Due to the nonlinearity of the mapping and
decoding algorithms, we call the dimensions of the output sub-
space achieved by this method,nonlinear degrees of freedom.

Having the classical training approach in mind, one might
try to estimate the unknown parameters of the channel in
each block and then communicate the message knowing the
fading coefficients. This is the approach taken in [2] where
it is proved that this is the optimal strategy in terms of the
achievable DOF in single-input single-output (SISO) systems.
In a block of lengthT , Q symbols are assigned to gather
information about the fading coefficients in the training phase
and T − Q symbols are used to convey the message in the
transmission phase. Thus there are(1−Q/T ) DOF per symbol.

In the same paper, there is a conjecture about the MIMO
systems which states that ifnt < min{nr, T/2}, the pre-log
factor of the system isnt(1−ntQ/T ). In a block of lengthT ,
there aren2

tQ independent unknown elements which describe
the fading coefficients in this block. Thus,n2

tQ symbols are
assigned to gather information about the fading coefficients
and ntT − n2

tQ symbols are used to transmit information.
The loss in the number of DOF due to the training isn2

tQ
which is proportional to the rank of the correlation matrix in
this case. This conjecture is proved to be wrong for SIMO
systems in [3] and [4]. Our paper proves that this is not true
for MIMO systems either and strictly higher number of DOF
can be achieved using nonlinear decoding algorithms.

In [3], SIMO systems are studied. Hironaka’s theorem on
resolution of singularities in algebraic geometry is used to
prove that the pre-log factor of(1−1/T ) is achievable as long
as T > 2Q − 1 under some constraints over the correlation
matrix of the fading coefficients. We prove the achievability of
(1− 1/T ) DOF whenQ ≤ min(T − 1, nr) in SIMO systems
under some mild conditions and give the proper nonlinear
decoding algorithm. The constraints under which these DOF
are achievable are much milder than the ones given in [3].

Also the achievability of1− ⌈ Q
nr

⌉/T DOF per symbol for
the general number of received antennas is given in this paper.



For MIMO systems the decoding algorithm and some mild
sufficient conditions to achievent(1− nt/T ) DOF per trans-
mitted symbol in the regime whenntQ ≤ min(T −nt, nr) is
given in section V.

II. DOF AS THE DIMENSIONALITY

Theorem II.1. If for some X0 in the input space of the
communication channel, there is aD dimensional neighbor-
hood in input space which is mapped to aD dimensional
neighborhood in the noise-less output space and this mapping
is one-to-one with probability one in this space, then the
degrees of freedomD is achievable in this system.

To achieve theD degrees of freedom in this neighborhood,
QAM modulation is performed in each of theD dimensions of
input space which is conserved in output space. Definedmin,x

to be the minimum distance of the codewords in input space.
In the communication channel with signal to noise ratioSNR,
we can assume the input power constraint impliesE[‖x‖2] ≤ 1
and stationary noise has power spectral density1/SNR.

Define dmin,y as the minimum distance between noiseless
received codewords in the output space. Since the mapping is
one-to-one with probability one in this space, the eigenvalues
of the Jacobian of this mapping is strictly positive with
probability one. So with probability1 − ǫ, the minimum
eigenvalue of the Jacobian of the mapping is greater thanσ0.
Thus, with probability1− ǫ we would havedmin,y ≥ dmin,xσ0.

In the fading channel with the Rayleigh fading coefficients
and noise power density1/SNR, the probability of error
vanishes as long asdmin,y ≫ 1/

√
SNR. Thus, the probability

of error vanishes as long asdmin,xσ0 ≫ 1/
√

SNR. Setting
dmin,x = 1

σ0SNR1/2−δ , the probability of error vanishes. The
power constraint implies that in each dimension, QAM would
give (2/dmin,x)

2 codewords. Thus, with probability1 − ǫ
the total number of codewords would be(2/dmin,x)

2D =
(2σ0SNR1/2−δ)2D and the achievable rate is(1 − ǫ)(1 −
2δ)D log(SNR) + o(log SNR).

III. A S IMPLE EXAMPLE

Assume a SIMO system with parametersT = 3, Q =
2, nr = 2 and nt = 1 in which the fading coefficients
at t = 1, 2 are statistically independent of each other and
the coefficient att = 3 is a linear combination of the
coefficients att = 1 and2. Thus,h1 = [h1[1], h1[2], h1[3]] and
h2 = [h2[1], h2[2], h2[3]] whereh1[3] = αh1[1] + βh1[2] and
h2[3] = αh2[1] + βh2[2] for someα, β ∈ C. The correlation
matrix has rank2 in this case

KH =





1 0
0 1
α∗ β∗





[

1 0 α
0 1 β

]

.
The transmitted signal in a block of time isx =

[x[1], x[2], x[3]]. The noise-free received signal in the high SNR
regime is

y1 = [h1[1]x[1], h1[2]x[2], (αh1[1] + βh1[2])x[3]]

y2 = [h2[1]x[1], h2[2]x[2], (αh2[1] + βh2[2])x[3]]

It is obvious that havingy1 andy2, the transmitted signals
can not be recovered uniquely without any side information
about the realization of the channel.

The classical approach towards the non-coherent
communications would transmit training signals over
t = 1, 2 to estimate the unknown fading coefficients
({h1[1], h1[2], h2[1], h2[2]}) and the message would be
transmitted at timet = 3. Thus the degrees of freedom of the
channel would be1/3.

But looking more closely, we realize that if training is
performed only att = 1, we can recover the transmitted
messages att = 2, 3 without first estimating all the fading
coefficients explicitly. Assume thatx[1] = 1.

At the receiver, both antennas perform a nonlinear calcula-
tion and divide their received signals by they1[1] andy2[1],

y1/y1[1] = [1, h1[2]/h1[1]x[2], (α+ βh1[2]/h1[1])x[3]]

y2/y2[1] = [1, h2[2]/h2[1]x[2], (α+ βh2[2]/h2[1])x[3]]

Now the transmitted signals att = 2, 3 can be decoded
by solving the4 non-linear equations with4 unknowns (i.e.,
x[2], x[3], h1[2]/h1[2], h2[2]/h2[1]). We observe that even though
after finding the transmitted signals, we can estimate all the
fading coefficients, but we didn’t need to explicitly estimate
them before decoding the transmitted signals. The above
nonlinear approach enabled us to achieve(1 − 1/T ) = 2/3
degrees of freedom per symbol which is strictly larger than
the classical training approach which tries to estimate allthe
fading coefficients explicitly before the communication phase.

IV. SIMO SYSTEMS

In the model of SIMO systems of interest, there is one
transmit antenna andnr receive antennas.x[t] for t = 1, · · · , T
is the transmitted signal at timet. yn[t] for n = 1, · · ·nr

denotes the noise-free signal atnth receive antenna at time
t. Also, hn[t] is the fading coefficient between the trans-
mitter and thenth receive antenna at timet. We define
x = [x[1], x[2], · · · , x[T ]], yn = [yn[1], yn[2], · · · , yn[T ]] and
hn = [hn[1], hn[2], · · · , hn[T ]].

The correlation matrixKH = A†A, known at the receivers
as channel side information has rankQ < T . Thus,hn[t], can
be written ashn[t] =

∑Q
q=1 A

q
[t]sqn wheresqn’s are IID normal

Gaussian distributed.
The noise-free received signals from the channel can be

expressed as

yn =

Q
∑

q=1

sqn [A
q diag(x)]

The noise-less received signal at each antenna,yn, is
living in a Q dimensional linear subspaceFA(x) =
span{Aq diag(x) for q = 1, · · · , Q}.



FA(x) is a nonlinear mapping from vectorx to a Q
dimensional subspace inCT . Since yn ∈ FA(x) for all
n = 1, · · · , nr, looking at the received signals in all the
antennas in the high SNR regime,FA(x) can be recovered
with probability one as long asnr ≥ Q. In this regime, we
haveFA(x) = span{y1,y2, · · · ,ynr}.

We want to know which dimensions inFA(x) are reachable
by changing the transmitted signalx.

Firstly, it is observed that for anyα ∈ C, FA(αx) = FA(x).
Thus, we need to lose at least one degree of freedom in the
representation of the vectorx to be able to recover it from
FA(x) uniquely. Having this constraint,FA(x) is a mapping
over the manifolds from a one-dimensional linear subspace in
CT to aQ dimensional linear subspace. The loss of one degree
of freedom can be in form of normalization of the transmitted
power or equivalently training (e.g.,x[T ] = 1). Proving that
by training one degree of freedom, the transmitted message is
recoverable with probability one, we know that there areT−1
degrees of freedom in a block of lengthT in this regime.

In the high SNR regime,FA(x) can be restored from the
noise-free received signals with probability one as long asQ ≤
nr. In the receiver, after building the canonical form ofFA(x),
the decoding algorithm tries to recover the transmitted signal
x. We can prove that the canonical form is a bijective function
of the transmitted signal with probability one. This being true,
a decoding algorithm is proposed to recover the transmitted
signal.

A. Change of Coordinates

Following the notation in [1], each linear subspace of
dimensionL in CT can be represented as span ofL linearly
independent vectors in the rows of a matrixR ∈ CL×T . The
same subspace is represented by choosing any non-singular
matrix C ∈ CL×L and constructing matrixB ∈ CL×T such
that R = CB. The matrix CR can be chosen such that
B[1:L] = IL, whereB[1:L] ∈ CL×L is the submatrix of firstL
columns of matrixB and IL is the identity matrix of sizeL.

We call matrixB the canonical representationof this linear
subspace of dimensionL in CT . ChoosingCR = R[1:L] as
the firstL columns of matrixR, we constructB = C−1

R
R.

B. Mapping over the Manifolds

As mentioned,FA(x) is a mapping over the manifolds. In
order to study this mapping, we use the canonical form of
the linear subspaces. By using the canonical form for both the
input and output of the transform,FA(x) can equivalently be
represented asFA : CT−1 → CQ(T−Q).

For simplicity of decoding algorithm, the training is per-
formed as constraining the transmitted signalx so thatx[T ] =
1. So the input of the transformFA is [x[1], x[2], · · · , x[T−1]] ∈
CT−1. The output of the transform is the canonical form of
FA(x) as introduced in section IV-A. Thus the parameters,
determining the output of the transform is the non-trivial
components of matrixB which will be described below. We
will show that we can choose a set of dimensionT − 1 of the

parameters defining the output and form a bijective transform
between the input and output with probability one.

We know thatFA(x) can be represented as the span of
rows of matrixR = A diag(x). In order to form the canonical
representation ofFA(x), we chooseCR as the following,

CR = R[1:Q] = A[1:Q] diag(x[1:Q])

Wherex[1:Q] ∈ CQ is vector of firstQ elements of vector
x. We defineA[t] as thet-th column of matrixA. Defining
R[t] andB[t] similarly, R[t] = A[t]x[t]. SinceB = C−1

R
R, we

know that for allt = Q+ 1, · · · , T :

B[t] = (A[1:Q] diag(x[1:Q]))
−1

A[t]x[t]

= x[t] (diag(x[1:Q]))−1 (A[1:Q])−1
A[t]

Defining the vectorE[t] = (A[1:Q])
−1

A[t], known as the
channel side information at the receiver for anyt = Q +
1, · · · , T andq = 1, · · · , Q,

Bq
[t] = Eq

[t]x[t]/x[q] (3)

C. Decoding Algorithm

The trainingx[T ] = 1 is assumed for the transmitted signal.
We also assume thatQ < T andQ ≤ nr.

In the high SNR regime, the effect of noise is neglected.
Thus the decoding algorithm performs as follows:

1) ConstructF̂A(x) as the span of rows the low rank ap-
proximation ofYnoisy. It could be formed to be the span
of theQ right singular vectors ofYnoisy corresponding
to its Q largest singular values.

2) Construct matrix̂B as the canonical form of̂FA(x) such
thatB[1:Q] = IQ.

3) ComputeE[t] = (A[1:Q])
−1

A[t] for t > Q.
4) For q = 1, · · · , Q, use (3) aŝx[q] = Eq

[T ]/B̂q
[T ]

5) Having x̂[1] for Q+ 1 ≤ t < T , use (3) as

x̂[t] = x̂[1]
B̂1

[t]

E1[t]

D. Recovery Conditions

Looking at the decoding algorithm with the above assump-
tions, the Jacobian of the mapping between the manifolds
can be computed. The following theorem is the result of this
computation.

Theorem IV.1. The signal recovery at the receiver succeeds
if the following conditions are satisfied:

• x[q] 6= 0 for any1 ≤ q ≤ Q. This situation can be avoided
with probability one by simply assuming any continuous
distribution over the transmitted signals.

• Eq
[T ] 6= 0 for any 1 ≤ q ≤ Q.

• E1
[t] 6= 0 for anyQ+ 1 ≤ t ≤ T − 1.

Having definedE[t] = (A[1:Q])−1
A[t], Eq

[t] 6= 0 if and
only if
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6= 0

Therefore, to be able to perform the decoding process
successfully, in addition to having a continuous distribution
over the transmitted signals, we should guarantee that the
choice ofQ columns of the matrixA, corresponding to cases
2 and 3 are linearly independent of each other.

This recovery condition is less restrictive than the one
mentioned in [3] which requires that any choice ofQ columns
of matrix A are linearly independent of each other. In [3],
resolution of singularities is used to prove that the mapping
introduced is one-to-one almost everywhere. It is proved that
the expectation of logarithm of determinant of Jacobian is not
−∞.

Our work is based on introducing a mapping from a
lower dimensional manifold to higher dimensional one. A
mathematical tool is introduced which studies of this mapping
using the canonical representation of the manifolds. This study
can compute the actual value of the Jacobian of the transform
and proves the achievability of nonlinear degrees of freedom
with probability one under the specified constraints.

E. Systems withnr < Q

In SIMO systems withnr < Q, the mentioned decoding
algorithm is not going to be feasible due to the fact that the
subspaceFA(x) can not be estimated from the received sig-
nals innr receive antennas. We define the matrixG ∈ Cnr×T

to be the canonical form of the linear subspace spanned by
the received signals fromnr antennas. We know that each
row of G, Gn ∈ C1×T is in FA(x), i.e.,Gn ∈ FA(x). Since
the matrixB is the canonical representation ofFA(x) where
B[1:Q] = IQ, we would know that

G = G[1:Q]B

Note that the matrixG is estimated at the receiver as
the canonical representation ofnr dimensional linear sub-
space spanned by the noise-less received signals. Thus, for
t = Q+ 1, ..., T , we would know that

G[t] = G[1:Q]B[t]

= G[1:Q] (diag(x[1:Q]))−1
E[t]x[t]

= G[1:Q] diag(E[t])[x[t]/x[1], · · · , x[t]/x[Q]]T

If nr = Q and assumingx[T ] = 1, looking at the
above equation fort = T , Q linear equations in1/x[q] for
q = 1, · · · , Q construct the nonlinear phase of the decoding
algorithm. But in the casenr < Q, this is an underspecified
set of equations. Thus, more training should be done to be able
to solve this system of equations. Assumingx[T ] = x[T−1] =
· · · = x[T−⌈ Q

nr
⌉+1] = 1, this (probably over-specified) system

of equations withnr⌈ Q
nr

⌉ equations andQ variables can be
solved to give1/x[q] for q = 1, · · · , Q.







G[T ]

...
G[T−⌈ Q

nr
⌉+1]






=







G[1:Q] diag(E[T ])
...

G[1:Q] diag(E[T−⌈ Q
nr

⌉+1])













1/x[1]

...
1/x[Q]







The number of degrees of freedom in correlatively changing
SIMO systems is1− ⌈ Q

nr
⌉/T .

V. MIMO SYSTEMS

Similar to SIMO systems, the channel in time varying
fading systems can be modeled as nonlinear mapping from
the transmitted signals to the noise-less received signals. In
correlatively changing channels, This nonlinear functionis a
mapping over the manifolds from a lower dimensional linear
subspace to higher dimensional subspace. In order to find
the number of degrees of freedom of the system, the high
SNR received signals are used to construct the output linear
subspace of this mapping. Then, the canonical representation
of this subspace is constructed. The goal is to find as many
number of dimensions of the input signal as possible from this
canonical representation.

As shown previously the noiseless received signal fromn-th
antenna in a block of time of lengthT is

yn =

Q
∑

q=1

nt
∑

m=1

sqm,n [A
q diag(xm)]

Thus, the linear subspace carrying the message at the
receiver is

FA(X) = span{Aq diag(xm) for q = 1, . . . , Q

andm = 1, · · · , nt}
For all n = 1, · · · , nr, yn ∈ FA(X).
It is easily seen thatFA(X) is a mapping fromΩX to

an ntQ dimensional linear subspace. Thus, the message is
transmitted through the linear subspace spanning the rows
of matrix X. By fixing any nt columns of matrixX, this
linear subspace is specified uniquely. This can be done by
transmitting the training signals in anynt chosen time slots
in the block of time of lengthT .

The matrixR ∈ CntQ×T whose rows spanFA(X) is

R =











A diag(x1)
A diag(x2)

...
A diag(xnt)











(4)

Defining A[1:ntQ] ∈ CQ×ntQ andxm[1:ntQ] similar to the
SIMO case, the firstntQ columns of matrixR would be

CR = R[1:ntQ] =











A[1:ntQ] diag(x1[1:ntQ])
A[1:ntQ] diag(x2[1:ntQ])

...
A[1:ntQ] diag(xnt [1:ntQ])













SinceB = CR
−1R we know thatR[t] = CRB[t] for all

t = ntQ+ 1, · · · , T .
Thus looking at thet-th column of matrixR as defined

in (4), for m = 1, · · · , nt and t > ntQ, we would know

A[t]xm[t] = A[1:ntQ] diag(xm[1:ntQ])B[t]

= A[1:ntQ] diag(B[t])xT
m[1:ntQ] (5)

Since with the above choice ofCR, B[1:ntQ] = IntQ, this
relationship betweenxm[t] andB[t] is trivial for t ≤ ntQ.

For t > ntQ, we use a two phase decoding algorithm,
which uses the training signals in the first nonlinear phase
to get information aboutX[1:ntQ]. In the linear phase of the
decoding algorithm,̂X[1:ntQ] is used to estimate the remaining
transmitted signals.

The nonlinear phase of the algorithm is preformed fort =
ntQ+1, · · · , nt(Q+1). We choose the training signal to have
the formX[ntQ+1:nt(Q+1)] = Int .

Writing the equation 5 for allntQ < t ≤ nt(Q + 1) in a
matrix, for m = 1, · · · , nt, we would have,











A[ntQ+1]xm[ntQ+1]

A[ntQ+2]xm[ntQ+2]

...
A[nt(Q+1))]xm[nt(Q+1))]











=











A[1:ntQ] diag(B[ntQ+1])
A[1:ntQ] diag(B[ntQ+2])

...
A[1:ntQ] diag(B[nt(Q+1)])











xT
m[1:ntQ] (6)

The left hand side of the above equation is known at both
the transmitter and the receiver as a result of the training.
Having constructed the matrixB, the inverse of the transform
in equation 6 can be used to estimatex̂m[1:ntQ].

A. Decoding Algorithm

So the decoding algorithm at the receiver would perform as
follows

1) ConstructF̂A(X) of dimensionntQ as the span of the
rows of the low rank approximation ofΩYnoisy similar to
the SIMO case.

2) Construct matrixB̂ as the canonical representation of
F̂A(X).

3) Use equation (6) to recover̂X[1:ntQ].
4) For m = 1, · · · , nt and nt(Q + 1) < t ≤ T , having

X̂[1:ntQ], to recoverx̂m[t], use

x̂m[t] = A1
[1:ntQ] diag(B̂[t])x̂T

m[1:ntQ]/A1
[t]

B. Recovery Conditions

Theorem V.1. In correlatively changing fading MIMO systems
in the regime whenntQ ≤ min(nr, T − nt) the number of
DOF of nt(1 − nt/T ) per transmitted symbol is achievable
under the following sufficient conditions.

These conditions will provide the recovery of the transmitted
message with probability one at the receiver using the above
decoding algorithm.

• The transmitted signal should have continuous distribu-
tion over linear subspaces of dimensionnt.

• Any Q columns of the matrixA[1:nt(Q+1)] should be
linearly independent of each other.

The proof consists of two main parts. The first part proves
that satisfying the above constraints, in the canonical rep-
resentation ofFA(X), Bq

[t] 6= 0 with probability one for
ntQ < t ≤ nt(Q + 1).

In the second part, it is proved that in the nonlinear phase of
the decoding algorithm, the above constraints are the sufficient
conditions to have a locally surjective nonlinear transform
from CntQ to CntQ which gives thentQ nonlinear degrees
of freedom that is achieved through the nonlinear decoding.

VI. CONCLUSION

In this paper, using the dimension counting argument, the
degrees of freedom of correlatively changing fading channel
over SIMO and MIMO systems were analyzed whenntQ ≤
min(nr, T − nt). It is shown that in this channel, in the high
SNR regime, information is transmitted through a nonlinear
transform from the linear subspace spanned by the transmitted
signals to the subspace spanned by the received signals.
This transform is a mapping over the Grassman manifold of
dimensionnt in CT to another manifold of dimensionntQ in
CT . Analysis of the dimensions which are only reachable by
the transmitted signal gives usnt(T − nt) nonlinear degrees
of freedom in a block of lengthT . This number is the same as
the number of degrees of freedom in flat fading channel in the
same regime. This shows that using proper nonlinear decoding
techniques, correlatively changing channels can achieve the
same pre-log factor as the flat fading channels.
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