169 research outputs found

    Tensionless String in the Notoph Background

    Full text link
    We study the interaction between a tensionless (null) string and an antisymmetric background field B_{ab} using a 2-component spinor formalism. A geometric condition for the absence of such an interaction is formulated. We show that only one gauge-invariant degree of freedom of the field B_{ab} does not satisfy this condition. Identification of this degree of freedom with the notoph field \phi of Ogievetskii-Polubarinov-Kalb-Ramond is suggested. Application of a two-component spinor formalism allows us a reduction of the complete system of non-linear partial differential equations and constraints governing the interacting null string dynamics to a system of linear differential equations for the basis spinors of the spin-frame. We find that total effect of the interaction is contained in a single derivation coefficient which is identified with the notoph field.Comment: 15 pages, no figures, RevTeX 3.

    Rescattering effects in laser-assisted electron-atom bremsstrahlung

    Get PDF
    Rescattering effects in nonresonant spontaneous laser-assisted electron-atom bremsstrahlung (LABrS) are analyzed within the framework of time-dependent effective-range (TDER) theory. It is shown that high energy LABrS spectra exhibit rescattering plateau structures that are similar to those that are well-known in strong field laser-induced processes as well as those that have been predicted theoretically in laser-assisted collision processes. In the limit of a low-frequency laser field, an analytic description of LABrS is obtained from a rigorous quantum analysis of the exact TDER results for the LABrS amplitude. This amplitude is represented as a sum of factorized terms involving three factors, each having a clear physical meaning. The first two factors are the exact field-free amplitudes for electron-atom bremsstrahlung and for electron-atom scattering, and the third factor describes free electron motion in the laser field along a closed trajectory between the first (scattering) and second (rescattering) collision events. Finally, a generalization of these TDER results to the case of LABrS in a Coulomb field is discussed

    On the cancellation of 4-derivative terms in the Volkov-Akulov action

    Full text link
    Recently Kuzenko and McCarty observed the cancellation of 4-derivative terms in the D=4N=1D=4 {\cal N}=1 Volkov-Akulov supersymmetric action for the fermionic Nambu-Goldstone field. Here is presented a simple algebraic proof of the cancellation based on using the Majorana bispinors and Fiertz identities. The cancellation shows a difference between the Volkov-Akulov action and the effective superfield action recently studied by Komargodski and Seiberg and containing one 4-derivative term. We find out that the cancellation effect takes place in coupling of the Nambu-Goldstone fermion with the Dirac field. Equivalence between the KS and the VA Lagrangians is proved up to the first order in the interaction constant of the NG fermions.Comment: 18 pages; the version accepted for publication in Phys. Rev. D; new section regarding the proof of the equivalence between the Komargodski-Seiberg and the Volkov-Akulov actions is added: some comments and new references are include

    N=2 Massive superparticle: the Minimality Principle and the k-symmetry

    Get PDF
    The electromagnetic interaction of massive superparticles with N=2 extended Maxwell supermultiplet is studied. It is proved that the minimal coupling breaks the k-symmetry. A non-minimal k-symmetric action is built and it is established that the k-symmetry uniquely fixes the value of the superparticle's anomalous magnetic momentComment: 20 pages, Latex, no figure

    Mathematical modelling of RF plasma flow at low pressure with electrodynamics

    Get PDF
    © Published under licence by IOP Publishing Ltd. The mathematical model of the RF plasma at low pressure in both free-molecule and transition flow at Knudsen 0.03 ≤ Kn ≤ 3 is described. The model is based on the statistical approach for the neutral component of the plasma together with the continuum model for electron, electromagnetic field and metastable components. Results of plasma flow parameters calculations and testing results of electric field calculations are presented

    Numerical solution of the model problem of CCRF-discharge at atmospheric pressure

    Get PDF
    © The Authors, published by EDP Sciences, 2017. This work describes a 1D mathematical model of capacitive coupled RF discharge between symmetrical electrodes in argon at atmospheric pressure in a local approximation. Electrons, atomic and molecular ions, metastable atoms and argon dimmers as well as ground-state atoms are considered. A simplified diagram of argon excited states when two metastable and two resonance states are replaced with the uniform level. Such diagram is frequently used to simulate argon plasma due to efficient mixing of these layers at electron impacts. Velocity factors of electron impact processes were calculated using Boltzmann equation with a glance to electron-electron collisions. This work describes numerical algorithm of mathematical model implementation, which is based on finite-dimensional approximation of the problem using difference schemes together with iteration process. The software was developed to implement iterative processes using MatLab. Characteristics of atmospheric pressure capacitive coupled RF discharge at interelectrod distance 20 mm are calculated
    • …
    corecore