21 research outputs found

    Local and systemic therapy may be safely de-escalated in elderly breast cancer patients in China: A retrospective cohort study

    Get PDF
    BackgroundFor elderly patients with breast cancer, the treatment strategy is still controversial. In China, preoperative axillary lymph node needle biopsy is not widely used, resulting in many patients receiving axillary lymph node dissection (ALND) directly. Our study aims to determine whether local and systemic therapy can be safely de-escalated in elderly breast cancer.MethodsPatients aged ≥70 years were retrospectively enrolled from our institution’s medical records between May 2013 and July 2021. Groups were assigned according to local and systemic treatment regimens, and stratified analysis was performed by molecular subtypes. Univariate and multivariate survival analyses were used to compare the effects of different regimens on relapse-free survival (RFS).ResultsA total of 653 patients were enrolled for preliminary data analysis, and 563 patients were screened for survival analysis. The mean follow-up was 19 months (range, 1–82 months). Axillary lymph node metastases were pathologically confirmed in only 2.1% of cN0 cases and up to 97.1% of cN+ cases. In the aspect of breast surgery, RFS showed no significant difference between mastectomy and BCS group (p = 0.3078). As for axillary surgery, patients in the ALND group showed significantly better RFS than those in the sentinel lymph node biopsy (SLNB) group among pN0 patients (p = 0.0128). Among these cases, the proportion of cN+ in ALND was significantly higher than that in SLNB (6.4% vs. 0.4%, p = 0.002), which meant axillary lymph nodes (ALNs) of ALND patients were larger in imaging and more likely to be misdiagnosed as metastatic. With regard to adjuvant therapy, univariate and multivariate analyses showed that RFS in different comprehensive adjuvant regimens were similar especially among hormone receptor (HR)+/human epidermal growth factor receptor 2 (HER2)− subgroup where patients who did not receive any adjuvant therapy accounted for 15.7% (p > 0.05).ConclusionsIt is feasible to reduce some unnecessary local or systemic treatments for elderly breast cancer patients, especially in HR+/HER2− subtype. Multiple patient-related factors should be considered when making treatment plans

    Recent advances in metamaterial klystrons

    No full text
    As a kind of artificially structured media, electromagnetic metamaterials (MTMs) have exotic electromagnetic properties that are not found or difficult to achieve in natural materials. This class of metal/dielectric-structured artificial media has attracted great attention during the past two decades and made important breakthroughs. A variety of passive and active devices based on MTMs have been developed rapidly. Especially MTM klystrons, which show very remarkable advantages, including miniaturization, high gain, and high efficiency in the microwave band. MTM extended interaction klystrons creatively combine the advantages of MTMs, extended interaction technology, and klystrons. It provides a new design idea for the development of brand-new klystrons with high performance. In this review paper, we report the recent advances in MTM klystrons including MTM extended interaction oscillator and MTM extended interaction klystron amplifier. Furthermore, the prospects and challenges of MTM klystrons are discussed. Finally, the development trend is concluded

    Facile and Versatile Replication of High-performance Superlyophobic Surfaces on Curable Substrates Using Elastomer Molds

    No full text
    We have developed a facile, versatile and low-cost fabrication method for high-performance superlyophobic surfaces (SLS, simultaneously superhydrophobic and superoeleophobic) on curable materials, which is promising to unblock the two bottlenecks of SLS (relying on very few materials and requiring demanding fabrication). By using poly(dimethylsiloxane) (PDMS) as the elastomer mold, T-shape microstructures of Si-based SLS were readily transferred to poly(methyl methacrylate) (PMMA) with high precision, high fidelity and comparable non-wetting performances. The repeatable and durable use of Si and PDMS allowed mass production of SLS on various curable materials without significant deterioration, and dramatically diluted the fabrication cost. We believe this method may initialize the high-throughput, high-performance and low-cost SLS fabrication on various substrates

    Tailoring Plasmon Resonances in Aluminium Nanoparticle Arrays Fabricated Using Anodic Aluminium Oxide

    No full text
    Aluminium (Al) nanoparticles (NPs) over a 1.2-cm(2) -size area are fabricated using nanoporous anodic aluminium oxide as shadow masks. With this technique, plasmon response of Al NP arrays with different out-of-plane height is investigated. The dipolar-localized surface plasmon resonances (LSPRs) peak of Al NP arrays is blueshifted and then redshifted slightly with an increase in particle height because of interparticle interactions. Moreover, a novel method is demonstrated to reduce the size of Al particle via removing the oxide shell by wet chemical etching and taking advantage of the rapid oxidization of the metal core upon exposure to atmosphere. Three kinds of acid solutions (mixture of H3PO4 and H2CrO4, H3PO4, and H2SO4) are demonstrated as effective etchants. By adjusting the etching conditions, the blueshift of LSPRs can be controlled precisely. Dipolar LSPR is obtained at wavelength down to 234 nm (5.3 eV), among the shortest ones ever observed in patterned Al NP arrays

    Investigation of angular log-periodic folded groove waveguide slow-wave structure for low voltage Ka-band TWT

    No full text
    In this paper, a novel angular log-periodic folded groove waveguide (ALFGW) slow-wave structure (SWS) has been investigated theoretically and experimentally for application in Ka-band traveling-wave tubes (TWTs). The dispersion relation for the ALFGW is derived analytically, and the dispersion characteristics are calculated for a Ka-band design. The designed SWS is fabricated using oxygen-free-copper that is silver electroplated. The measured cold-test parameters show good agreement with the simulation results, with S varying from -2.7 dB to -4.8 dB and S better than -13.6 dB over the frequency range of 30-38 GHz. Simulations of beam-wave interactions using a 4850 V and 0.4 A sheet beam with a high aspect ratio of 28:1 indicate an output power of 128 W, corresponding to a maximum gain and electronic efficiency of 18.1 dB and 6.6%, respectively. Due to the log-periodic form, a higher output power, higher efficiency, wider bandwidth, and lower operating voltage are achieved as compared to a TWT based on the conventional folded groove waveguide (FGW) SWS. These results show that the proposed ALFGW SWS has good potential for application in relatively high-power wideband TWTs.Published versio

    The urgent need to control volatile organic compound pollution over the Qinghai-Tibet Plateau

    No full text
    Summary: Owing to the impact of the western development of China, there have been signs of air pollution over the Qinghai-Tibet Plateau in recent years. However, monitoring data on atmospheric volatile organic compounds (VOCs) are lacking in plateau areas. Here, VOCs concentrations in urban and background areas in North China and the Qinghai-Tibet Plateau were observed from 2012 to 2014 and 2020 to 2022, respectively. Compared to 2012–2014, the concentration of VOCs increased to 2.5 times in urban areas on the Qinghai-Tibet Plateau, which was equivalent to that in North China. Oil, gas, and solvent evaporation caused by a low atmospheric pressure is the primary factor for the increase in VOCs in plateau areas, and weak VOCs degradation is the secondary factor. Hence, we put forward the VOCs control strategies in plateau areas and point out the defects in the current research
    corecore