5,845 research outputs found
Building quantum neural networks based on swap test
Artificial neural network, consisting of many neurons in different layers, is
an important method to simulate humain brain. Usually, one neuron has two
operations: one is linear, the other is nonlinear. The linear operation is
inner product and the nonlinear operation is represented by an activation
function. In this work, we introduce a kind of quantum neuron whose inputs and
outputs are quantum states. The inner product and activation operator of the
quantum neurons can be realized by quantum circuits. Based on the quantum
neuron, we propose a model of quantum neural network in which the weights
between neurons are all quantum states. We also construct a quantum circuit to
realize this quantum neural network model. A learning algorithm is proposed
meanwhile. We show the validity of learning algorithm theoretically and
demonstrate the potential of the quantum neural network numerically.Comment: 10 pages, 13 figure
Substrate entering and product leaving trajectories predict an engulfing dynamic for the major conformational change of the β-lactam acylase
It is still a major challenge to acquire insight into the conformational changes between the ground state and the transition state of an enzyme, although conformational fluctuation within interconverting conformers has been widely investigated (1-4). Here, we utilize different enzymatic reactions in b-lactam acylase to figure out the substrate/product trajectories in the enzyme, thereby probing the overall conformational changes in transition state. First, an auto-proteolytic intermediate of cephalosporin acylase (EC 3.5.1.11) with partial spacer segment was identified. As a final proteolytic step, the deletion of this spacer segment was revealed to be a first-order reaction, suggesting an intramolecular Ntn mechanism for the auto-proteolysis. Accordingly, the different proteolytic sites in the acylase precursor indicate a substrate entering pathway along the spacer peptide. Second, bromoacyl-7ACA can interact with penicillin G acylase (EC 3.5.1.11) in two distinguish aspects, to be hydrolyzed as a substrate analogue and to affinity alkylate the conserved Trpb4 as a product analogue. The kinetic correlation between these two reactions suggests a channel opening from Serb1 to Trpb4, responsible for the main product leaving. These two reaction trajectories relaying at the active centre, together with the crystal structures (5-10), predict an engulfing dynamic involving pocket constriction and channel opening
Study of hydrogen internal combustion engine vehicles based on the whole life cycle evaluation method
In order to better achieve the goal of low carbon emissions from vehicles, a whole life cycle assessment of hydrogen-fueled internal combustion engine vehicles has been conducted in recent years. Based on the study of hydrogen use around the world, we studied the emission and economic performance of hydrogen-fueled internal combustion engine vehicles from the beginning of hydrogen production to the end of use (Well-to-Wheel, WTW) based on the whole life cycle evaluation method. The results show that the overall environmental impact of hydrogen production by steam reforming of natural gas is the smallest, and that the rational use of "abandoned electricity" for hydrogen production from electrolytic water in the western part of China significantly reduces the overall environmental impact and the cost of hydrogen production. In the use phase, the emissions are less, which not only can meet the National 6 emission standard, but also can reach higher emission standard after adding exhaust gas recirculation (EGR). From the whole life cycle point of view, hydrogen-fueled internal combustion engine has a very good development prospect.Citation:Â Guo, P., Xu, J., Zhao, C., and Zhang, B. (2022). Study of hydrogen internal combustion engine vehicles based on the whole life cycle evaluation method. Trends in Renewable Energy, 8, 27-37. DOI: 10.17737/tre.2022.8.1.0013
Dynamics in direct two-photon transition by frequency combs
Two-photon resonance transition technology has been proven to have a wide
range of applications,it's limited by the available wavelength of commercial
lasers.The application of optical comb technology with direct two-photon
transition (DTPT) will not be restricted by cw lasers.This article will further
theoretically analyze the dynamics effects of the DTPT process driven by
optical frequency combs. In a three-level atomic system, the population of
particles and the amount of momentum transfer on atoms are increased compared
to that of the DTPT-free process. The 17% of population increasement in 6-level
system of cesium atoms has verified that DTPT process has a robust enhancement
on the effect of momentum transfer. It can be used to excite the DTPTs of
rubidium and cesium simultaneously with the same mode-locked laser. And this
technology has potential applications in cooling different atoms to obtain
polar cold molecules, as well as high-precision spectroscopy measurement.Comment: 7 pages, 7 figure
- …