35 research outputs found

    A Broad Learning Approach for Context-Aware Mobile Application Recommendation

    Full text link
    With the rapid development of mobile apps, the availability of a large number of mobile apps in application stores brings challenge to locate appropriate apps for users. Providing accurate mobile app recommendation for users becomes an imperative task. Conventional approaches mainly focus on learning users' preferences and app features to predict the user-app ratings. However, most of them did not consider the interactions among the context information of apps. To address this issue, we propose a broad learning approach for \textbf{C}ontext-\textbf{A}ware app recommendation with \textbf{T}ensor \textbf{A}nalysis (CATA). Specifically, we utilize a tensor-based framework to effectively integrate user's preference, app category information and multi-view features to facilitate the performance of app rating prediction. The multidimensional structure is employed to capture the hidden relationships between multiple app categories with multi-view features. We develop an efficient factorization method which applies Tucker decomposition to learn the full-order interactions within multiple categories and features. Furthermore, we employ a group ℓ1−\ell_{1}-norm regularization to learn the group-wise feature importance of each view with respect to each app category. Experiments on two real-world mobile app datasets demonstrate the effectiveness of the proposed method

    A nanozyme tag enabled chemiluminescence imaging immunoassay for multiplexed cytokine monitoring

    Get PDF
    We report a new concept of a chemiluminescence imaging nanozyme immunoassay (CINIA), in which nanozymes are exploited as catalytic tags for simultaneous multiplex detection of cytokines. The CINIA provides a novel and universal nanozyme-labeled multiplex immunoassay strategy for high-throughput detection of relevant biomarkers and further disease diagnosis

    A nanozyme tag enabled chemiluminescence imaging immunoassay for multiplexed cytokine monitoring

    Get PDF
    We report a new concept of a chemiluminescence imaging nanozyme immunoassay (CINIA), in which nanozymes are exploited as catalytic tags for simultaneous multiplex detection of cytokines. The CINIA provides a novel and universal nanozyme-labeled multiplex immunoassay strategy for high-throughput detection of relevant biomarkers and further disease diagnosis

    METTL3 Regulated the Meat Quality of Rex Rabbits by Controlling PCK2 Expression via a YTHDF2–N6-Methyladenosine Axis

    No full text
    N6-methyladenosine (m6A) is the most prevalent internal mRNA modification in eukaryotes. The M6A modification plays an important role in transcription and cell function. The mechanism by which m6A modification regulates meat quality remains elusive. In this study, gene knockout and overexpression were used to explore m6A-modified regulation of meat quality. The content of PCK2 in blood increased significantly with the increase of Rex rabbits’ age. PCK2 expression levels in the longissimus lumborum and liver also increased significantly with the increase of Rex rabbits’ age. However, the expression level of PCK2 showed no significant difference in adipose tissue. In cell experiments, we found that METTL3 inhibited adipocyte differentiation by targeting the PCK2 gene via the recognition function of YTHDF2. Finally, the results of correlation analysis showed that PCK2 expression was positively correlated with intramuscular fat, whereas PCK2 expression was negatively correlated with total water loss rate at three different stages. In addition, PCK2 expression was also negatively correlated with reduced pH value at 75 and 165 days. Intramuscular fat content, pH and muscle water holding capacity are the main factors affecting the taste and flavor of muscle. Therefore, N6-methyladenosine regulated muscle quality by targeting the PCK2 gene

    Anatomic Study on the Main Male Reproductive Organs of Ostrich

    Full text link

    Identification of Methylated Gene Biomarkers in Patients with Alzheimer’s Disease Based on Machine Learning

    No full text
    Background. Alzheimer’s disease (AD) is a neurodegenerative disorder and characterized by the cognitive impairments. It is essential to identify potential gene biomarkers for AD pathology. Methods. DNA methylation expression data of patients with AD were downloaded from the Gene Expression Omnibus (GEO) database. Differentially methylated sites were identified. The functional annotation analysis of corresponding genes in the differentially methylated sites was performed. The optimal diagnostic gene biomarkers for AD were identified by using random forest feature selection procedure. In addition, receiver operating characteristic (ROC) diagnostic analysis of differentially methylated genes was performed. Results. A total of 10 differentially methylated sites including 5 hypermethylated sites and 5 hypomethylated sites were identified in AD. There were a total of 8 genes including thioredoxin interacting protein (TXNIP), noggin (NOG), regulator of microtubule dynamics 2 (FAM82A1), myoneurin (MYNN), ankyrin repeat domain 34B (ANKRD34B), STAM-binding protein like 1, ALMalpha (STAMBPL1), cyclin-dependent kinase inhibitor 1C (CDKN1C), and coronin 2B (CORO2B) that correspond to 10 differentially methylated sites. The cell cycle (FDR=0.0284087) and TGF-beta signaling pathway (FDR=0.0380372) were the only two significantly enriched pathways of these genes. MYNN was selected as optimal diagnostic biomarker with great diagnostic value. The random forests model could effectively predict AD. Conclusion. Our study suggested that MYNN could be served as optimal diagnostic biomarker of AD. Cell cycle and TGF-beta signaling pathway may be associated with AD

    <i>FTO</i> Regulated Intramuscular Fat by Targeting <i>APMAP</i> Gene via an m<sup>6</sup>A-YTHDF2-dependent Manner in Rex Rabbits

    No full text
    N6-methyladenosine (m6A) regulates fat development in many ways. Low intramuscular fat (IMF) in rabbit meat seriously affects consumption. In order to improve meat quality, we explored the law of IMF deposition. FTO could increase the expression of APMAP and adipocyte differentiation through methylation. However, interference YTHDF2 can partially recover the influence of interference FTO on the APMAP gene and adipocyte differentiation. APMAP promoted the differentiation of adipocytes. Analysis of IMF and APMAP expression showed IMF content is positive with the expression level of the APMAP gene (p FTO can regulate intramuscular fat by targeting the APMAP gene via an m6A-YTHDF2-dependent manner in Rex rabbits. The result provides a theoretical basis for the molecular breeding of rabbits

    The association between lactate dehydrogenase to serum albumin ratio and the 28-day mortality in patients with sepsis-associated acute kidney injury in intensive care: a retrospective cohort study

    No full text
    AbstractBackground The mortality rate of patients with sepsis-associated acute kidney injury (SA-AKI) in the intensive care unit (ICU) is high, and there is a need for early identification of SA-AKI patients with poor prognoses. This study investigated the relationship between the lactate dehydrogenase to serum albumin ratio (LAR) and prognosis in patients with SA-AKI.Methods We performed a retrospective cohort study of patients with SA-AKI who are represented in the Medical Information Mart for Intensive Care IV (MIMIC-IV). We used multivariable Cox regression analysis to determine adjusted hazard ratios (HRs) and 95% confidence intervals (CIs). Subgroup analysis, survival curves, and curve fitting were used to evaluate a connection between the LAR and prognosis in patients with SA-AKI.Results There were a total of 6453 participants in this research. The average age of the participants was 63.9 ± 16.1 years, and the average LAR was 11.0 (7.6, 17.7)/IU/g. After controlling for variables, the HRs for 28-day mortality were 1.20 (HR: 1.20, 95% CI: 1.05–1.38, p = 0.008) and 1.61 (HR: 1.61, 95% CI: 1.41–1.84, p < 0.001) for Tertile 2 (T2, 8.59≤ LAR< 14.66) and Tertile 3 (T3, LAR ≥ 14.66), respectively, compared to Tertile 1 (T1, LAR < 8.59). The outcomes for 90-day mortality and in-hospital death rate were comparable. The Kaplan–Meier (KM) analysis revealed that the group with greater LAR had higher 28-day and 90-day death rates.Conclusion Our study shows that LAR is associated with poor prognosis in patients with SA-AKI. Higher LAR is associated with higher 28-day, 90-day, and in-hospital mortality

    Tilings of parallelograms with similar triangles

    No full text
    corecore