85 research outputs found

    Gen-IR @ SIGIR 2023: The First Workshop on Generative Information Retrieval

    Full text link
    Generative information retrieval (IR) has experienced substantial growth across multiple research communities (e.g., information retrieval, computer vision, natural language processing, and machine learning), and has been highly visible in the popular press. Theoretical, empirical, and actual user-facing products have been released that retrieve documents (via generation) or directly generate answers given an input request. We would like to investigate whether end-to-end generative models are just another trend or, as some claim, a paradigm change for IR. This necessitates new metrics, theoretical grounding, evaluation methods, task definitions, models, user interfaces, etc. The goal of this workshop (https://coda.io/@sigir/gen-ir) is to focus on previously explored Generative IR techniques like document retrieval and direct Grounded Answer Generation, while also offering a venue for the discussion and exploration of how Generative IR can be applied to new domains like recommendation systems, summarization, etc. The format of the workshop is interactive, including roundtable and keynote sessions and tends to avoid the one-sided dialogue of a mini-conference.Comment: Accepted SIGIR 23 worksho

    Visual Named Entity Linking: A New Dataset and A Baseline

    Full text link
    Visual Entity Linking (VEL) is a task to link regions of images with their corresponding entities in Knowledge Bases (KBs), which is beneficial for many computer vision tasks such as image retrieval, image caption, and visual question answering. While existing tasks in VEL either rely on textual data to complement a multi-modal linking or only link objects with general entities, which fails to perform named entity linking on large amounts of image data. In this paper, we consider a purely Visual-based Named Entity Linking (VNEL) task, where the input only consists of an image. The task is to identify objects of interest (i.e., visual entity mentions) in images and link them to corresponding named entities in KBs. Since each entity often contains rich visual and textual information in KBs, we thus propose three different sub-tasks, i.e., visual to visual entity linking (V2VEL), visual to textual entity linking (V2TEL), and visual to visual-textual entity linking (V2VTEL). In addition, we present a high-quality human-annotated visual person linking dataset, named WIKIPerson. Based on WIKIPerson, we establish a series of baseline algorithms for the solution of each sub-task, and conduct experiments to verify the quality of proposed datasets and the effectiveness of baseline methods. We envision this work to be helpful for soliciting more works regarding VNEL in the future. The codes and datasets are publicly available at https://github.com/ict-bigdatalab/VNEL.Comment: 13 pages, 11 figures, published to EMNLP 2022(findings

    On the Robustness of Generative Retrieval Models: An Out-of-Distribution Perspective

    Full text link
    Recently, we have witnessed generative retrieval increasingly gaining attention in the information retrieval (IR) field, which retrieves documents by directly generating their identifiers. So far, much effort has been devoted to developing effective generative retrieval models. There has been less attention paid to the robustness perspective. When a new retrieval paradigm enters into the real-world application, it is also critical to measure the out-of-distribution (OOD) generalization, i.e., how would generative retrieval models generalize to new distributions. To answer this question, firstly, we define OOD robustness from three perspectives in retrieval problems: 1) The query variations; 2) The unforeseen query types; and 3) The unforeseen tasks. Based on this taxonomy, we conduct empirical studies to analyze the OOD robustness of several representative generative retrieval models against dense retrieval models. The empirical results indicate that the OOD robustness of generative retrieval models requires enhancement. We hope studying the OOD robustness of generative retrieval models would be advantageous to the IR community.Comment: 4 pages, submit to GenIR2

    Inducing Causal Structure for Abstractive Text Summarization

    Full text link
    The mainstream of data-driven abstractive summarization models tends to explore the correlations rather than the causal relationships. Among such correlations, there can be spurious ones which suffer from the language prior learned from the training corpus and therefore undermine the overall effectiveness of the learned model. To tackle this issue, we introduce a Structural Causal Model (SCM) to induce the underlying causal structure of the summarization data. We assume several latent causal factors and non-causal factors, representing the content and style of the document and summary. Theoretically, we prove that the latent factors in our SCM can be identified by fitting the observed training data under certain conditions. On the basis of this, we propose a Causality Inspired Sequence-to-Sequence model (CI-Seq2Seq) to learn the causal representations that can mimic the causal factors, guiding us to pursue causal information for summary generation. The key idea is to reformulate the Variational Auto-encoder (VAE) to fit the joint distribution of the document and summary variables from the training corpus. Experimental results on two widely used text summarization datasets demonstrate the advantages of our approach

    Learning to Truncate Ranked Lists for Information Retrieval

    Full text link
    Ranked list truncation is of critical importance in a variety of professional information retrieval applications such as patent search or legal search. The goal is to dynamically determine the number of returned documents according to some user-defined objectives, in order to reach a balance between the overall utility of the results and user efforts. Existing methods formulate this task as a sequential decision problem and take some pre-defined loss as a proxy objective, which suffers from the limitation of local decision and non-direct optimization. In this work, we propose a global decision based truncation model named AttnCut, which directly optimizes user-defined objectives for the ranked list truncation. Specifically, we take the successful transformer architecture to capture the global dependency within the ranked list for truncation decision, and employ the reward augmented maximum likelihood (RAML) for direct optimization. We consider two types of user-defined objectives which are of practical usage. One is the widely adopted metric such as F1 which acts as a balanced objective, and the other is the best F1 under some minimal recall constraint which represents a typical objective in professional search. Empirical results over the Robust04 and MQ2007 datasets demonstrate the effectiveness of our approach as compared with the state-of-the-art baselines

    PRADA: Practical Black-Box Adversarial Attacks against Neural Ranking Models

    Full text link
    Neural ranking models (NRMs) have shown remarkable success in recent years, especially with pre-trained language models. However, deep neural models are notorious for their vulnerability to adversarial examples. Adversarial attacks may become a new type of web spamming technique given our increased reliance on neural information retrieval models. Therefore, it is important to study potential adversarial attacks to identify vulnerabilities of NRMs before they are deployed. In this paper, we introduce the Adversarial Document Ranking Attack (ADRA) task against NRMs, which aims to promote a target document in rankings by adding adversarial perturbations to its text. We focus on the decision-based black-box attack setting, where the attackers have no access to the model parameters and gradients, but can only acquire the rank positions of the partial retrieved list by querying the target model. This attack setting is realistic in real-world search engines. We propose a novel Pseudo Relevance-based ADversarial ranking Attack method (PRADA) that learns a surrogate model based on Pseudo Relevance Feedback (PRF) to generate gradients for finding the adversarial perturbations. Experiments on two web search benchmark datasets show that PRADA can outperform existing attack strategies and successfully fool the NRM with small indiscernible perturbations of text
    • …
    corecore