82 research outputs found

    An Optimal Online Method of Selecting Source Policies for Reinforcement Learning

    Full text link
    Transfer learning significantly accelerates the reinforcement learning process by exploiting relevant knowledge from previous experiences. The problem of optimally selecting source policies during the learning process is of great importance yet challenging. There has been little theoretical analysis of this problem. In this paper, we develop an optimal online method to select source policies for reinforcement learning. This method formulates online source policy selection as a multi-armed bandit problem and augments Q-learning with policy reuse. We provide theoretical guarantees of the optimal selection process and convergence to the optimal policy. In addition, we conduct experiments on a grid-based robot navigation domain to demonstrate its efficiency and robustness by comparing to the state-of-the-art transfer learning method

    Leveraging Hyperbolic Embeddings for Coarse-to-Fine Robot Design

    Full text link
    Multi-cellular robot design aims to create robots comprised of numerous cells that can be efficiently controlled to perform diverse tasks. Previous research has demonstrated the ability to generate robots for various tasks, but these approaches often optimize robots directly in the vast design space, resulting in robots with complicated morphologies that are hard to control. In response, this paper presents a novel coarse-to-fine method for designing multi-cellular robots. Initially, this strategy seeks optimal coarse-grained robots and progressively refines them. To mitigate the challenge of determining the precise refinement juncture during the coarse-to-fine transition, we introduce the Hyperbolic Embeddings for Robot Design (HERD) framework. HERD unifies robots of various granularity within a shared hyperbolic space and leverages a refined Cross-Entropy Method for optimization. This framework enables our method to autonomously identify areas of exploration in hyperbolic space and concentrate on regions demonstrating promise. Finally, the extensive empirical studies on various challenging tasks sourced from EvoGym show our approach's superior efficiency and generalization capability

    On fairness in decision-making under uncertainty: Definitions, computation, and comparison

    Get PDF
    The utilitarian solution criterion, which has been extensively studied in multi-agent decision making under uncertainty, aims to maximize the sum of individual utilities. However, as the utilitarian solution often discriminates against some agents, it is not desirable for many practical applications where agents have their own interests and fairness is expected. To address this issue, this paper introduces egalitarian solution criteria for sequential decision-making under uncertainty, which are based on the maximin principle. Motivated by different application domains, we propose four maximin fairness criteria and develop corresponding algorithms for computing their optimal policies. Furthermore, we analyze the connections between these criteria and discuss and compare their characteristics

    Object-Oriented Dynamics Learning through Multi-Level Abstraction

    Full text link
    Object-based approaches for learning action-conditioned dynamics has demonstrated promise for generalization and interpretability. However, existing approaches suffer from structural limitations and optimization difficulties for common environments with multiple dynamic objects. In this paper, we present a novel self-supervised learning framework, called Multi-level Abstraction Object-oriented Predictor (MAOP), which employs a three-level learning architecture that enables efficient object-based dynamics learning from raw visual observations. We also design a spatial-temporal relational reasoning mechanism for MAOP to support instance-level dynamics learning and handle partial observability. Our results show that MAOP significantly outperforms previous methods in terms of sample efficiency and generalization over novel environments for learning environment models. We also demonstrate that learned dynamics models enable efficient planning in unseen environments, comparable to true environment models. In addition, MAOP learns semantically and visually interpretable disentangled representations.Comment: Accepted to the Thirthy-Fourth AAAI Conference On Artificial Intelligence (AAAI), 202

    Fairness in Multi-Agent Sequential Decision-Making

    Get PDF
    We define a fairness solution criterion for multi-agent decision-making problems, where agents have local interests. This new criterion aims to maximize the worst performance of agents with consideration on the overall performance. We develop a simple linear programming approach and a more scalable game-theoretic approach for computing an optimal fairness policy. This game-theoretic approach formulates this fairness optimization as a two-player, zero-sum game and employs an iterative algorithm for finding a Nash equilibrium, corresponding to an optimal fairness policy. We scale up this approach by exploiting problem structure and value function approximation. Our experiments on resource allocation problems show that this fairness criterion provides a more favorable solution than the utilitarian criterion, and that our game-theoretic approach is significantly faster than linear programming

    Symmetry-Aware Robot Design with Structured Subgroups

    Full text link
    Robot design aims at learning to create robots that can be easily controlled and perform tasks efficiently. Previous works on robot design have proven its ability to generate robots for various tasks. However, these works searched the robots directly from the vast design space and ignored common structures, resulting in abnormal robots and poor performance. To tackle this problem, we propose a Symmetry-Aware Robot Design (SARD) framework that exploits the structure of the design space by incorporating symmetry searching into the robot design process. Specifically, we represent symmetries with the subgroups of the dihedral group and search for the optimal symmetry in structured subgroups. Then robots are designed under the searched symmetry. In this way, SARD can design efficient symmetric robots while covering the original design space, which is theoretically analyzed. We further empirically evaluate SARD on various tasks, and the results show its superior efficiency and generalizability.Comment: The Fortieth International Conference on Machine Learning (ICML 2023
    • …
    corecore