1,384 research outputs found

    Sulfatide in health and disease. The evaluation of sulfatide in cerebrospinal fluid as a possible biomarker for neurodegeneration

    Get PDF
    Sulfatide (3-O-sulfogalactosylceramide, SM4) is a glycosphingolipid, highly multifunctional and particularly enriched in the myelin sheath of neurons. The role of sulfatide has been implicated in various biological fields such as the nervous system, immune system, host-pathogen recognition and infection, beta cell function and haemostasis/thrombosis. Thus, alterations in sulfatide metabolism and production are associated with several human diseases such as neurological and immunological disorders and cancers. The unique lipid-rich composition of myelin reflects the importance of lipids in this specific membrane structure. Sulfatide has been shown to be involved in the regulation of oligodendrocyte differentiation and in the maintenance of the myelin sheath by influencing membrane dynamics involving sorting and lateral assembly of myelin proteins as well as ion channels. Sulfatide is furthermore essential for proper formation of the axo-glial junctions at the paranode together with axonal glycosphingolipids. Alterations in sulfatide metabolism are suggested to contribute to myelin deterioration as well as synaptic dysfunction, neurological decline and inflammation observed in different conditions associated with myelin pathology (mouse models and human disorders). Body fluid biomarkers are of importance for clinical diagnostics as well as for patient stratification in clinical trials and treatment monitoring. Cerebrospinal fluid (CSF) is commonly used as an indirect measure of brain metabolism and analysis of CSF sulfatide might provide information regarding whether the lipid disruption observed in neurodegenerative disorders is reflected in this body fluid. In this review, we evaluate the diagnostic utility of CSF sulfatide as a biomarker for neurodegenerative disorders associated with dysmyelination/demyelination by summarising the current literature on this topic. We can conclude that neither CSF sulfatide levels nor individual sulfatide species consistently reflect the lipid disruption observed in many of the demyelinating disorders. One exception is the lysosomal storage disorder metachromatic leukodystrophy, possibly due to the genetically determined accumulation of non-metabolised sulfatide. We also discuss possible explanations as to why myelin pathology in brain tissue is poorly reflected by the CSF sulfatide concentration. The previous suggestion that CSF sulfatide is a marker of myelin damage has thereby been challenged by more recent studies using more sophisticated laboratory techniques for sulfatide analysis as well as improved sample selection criteria due to increased knowledge on disease pathology

    Plasma neurofilament light chain protein is not increased in forensic psychiatric populations: a pilot study

    Get PDF
    Introduction: Neurofilament light chain protein (NfL) is a fluid biomarker of neural injury measurable in cerebrospinal fluid and blood. Patients with different neurodegenerative disorders and mild traumatic brain injury display elevated levels of NfL. However, so far, elevated levels of NfL have not been demonstrated in persons with psychiatric disorders. To our knowledge, the occurrence of NfL in the blood has not previously been studied in persons undergoing forensic psychiatric assessment or persons treated in forensic mental health services. Supposedly, these persons suffer from experiences and conditions with a higher risk of neural injury than other psychiatric patients. Methods: In this pilot study, we investigated plasma levels of NfL in 20 persons undergoing forensic psychiatric assessment and 20 patients at a forensic psychiatric hospital. NfL values were compared with control groups of healthy individuals matched for age and sex. Results: The prevalence of increased NfL in both forensic groups was low and did not differ compared with the controls. However, some persons undergoing forensic psychiatric assessment showed slightly elevated values. Discussion: The slightly elevated values were observed in the group investigated closer in time to the index crime, when elevated NfL levels could be expected to be more prevalent due to acute conditions from the time of the offense. This gives reason to look further into this group

    Utility of plasma neurofilament light and total tau for clinical trials in Alzheimer's disease

    Get PDF
    INTRODUCTION: Several blood‐based biomarkers are associated with neuronal injury, but their utility in interventional clinical trials is unclear. This study retrospectively evaluated the utility of plasma neurofilament light (NfL) and total tau (t‐tau) in an 18‐month trial in mild Alzheimer's disease (AD). METHODS: Correlation and conditional independence analyses and Gaussian graphical models were used to investigate cross‐sectional and longitudinal relations between NfL, t‐tau, and clinical scales. RESULTS: NfL had a stronger association than t‐tau with clinical scales; t‐tau did not hold additional information to that given by NfL (P > 0.05 at all time points). NfL held independent information about shorter‐term (3‐ to 6‐month) progression beyond patient age and clinical scores. However, no meaningful gain in power was found when adjusting a longitudinal analysis of cognitive scores for baseline NfL. DISCUSSION: Plasma NfL is superior to t‐tau in mild AD. The ability of NfL to detect changes before clinical manifestations makes it a promising biomarker of drug response in trials of disease‐modifying drugs

    Fluid Biomarkers for Synaptic Dysfunction and Loss

    Get PDF
    Synapses are the site for brain communication where information is transmitted between neurons and stored for memory formation. Synaptic degeneration is a global and early pathogenic event in neurodegenerative disorders with reduced levels of pre- and postsynaptic proteins being recognized as a core feature of Alzheimer’s disease (AD) pathophysiology. Together with AD, other neurodegenerative and neurodevelopmental disorders show altered synaptic homeostasis as an important pathogenic event, and due to that, they are commonly referred to as synaptopathies. The exact mechanisms of synapse dysfunction in the different diseases are not well understood and their study would help understanding the pathogenic role of synaptic degeneration, as well as differences and commonalities among them and highlight candidate synaptic biomarkers for specific disorders. The assessment of synaptic proteins in cerebrospinal fluid (CSF), which can reflect synaptic dysfunction in patients with cognitive disorders, is a keen area of interest. Substantial research efforts are now directed toward the investigation of CSF synaptic pathology to improve the diagnosis of neurodegenerative disorders at an early stage as well as to monitor clinical progression. In this review, we will first summarize the pathological events that lead to synapse loss and then discuss the available data on established (eg, neurogranin, SNAP-25, synaptotagmin-1, GAP-43, and α-syn) and emerging (eg, synaptic vesicle glycoprotein 2A and neuronal pentraxins) CSF biomarkers for synapse dysfunction, while highlighting possible utilities, disease specificity, and technical challenges for their detection

    Ion concentrations in cerebrospinal fluid in wakefulness, sleep and sleep deprivation in healthy humans

    Get PDF
    Sleep is controlled by a circadian rhythmicity, via a reduction of arousal-promoting neuromodulatory activity, and by accumulation of somnogenic factors in the interstitial fluid of the brain. Recent experiments in mice suggest that a reduced neuronal excitability caused by a reduced concentration of potassium in the brain, concomitant with an increased concentration of calcium and magnesium, constitutes an important mediator of sleep. In the present study, we examined whether such changes in ion concentrations could be detected in the cerebrospinal fluid of healthy humans. Each subject underwent cerebrospinal fluid collection at three occasions in a randomized order: at 15:00 hours–17:00 hours during waking, at 06:00 hours–07:00 hours immediately following 1 night of sleep, and at 06:00 hours–07:00 hours following 1 night of sleep deprivation. When compared with wakefulness, both sleep and sleep deprivation produced the same effect of a small (0.1 mm, about 3%), but robust and highly significant, reduction in potassium concentration. Calcium and magnesium concentrations were unchanged. Our results support a circadian modulation of neuronal excitability in the brain mediated via changes of the interstitial potassium concentration

    Obinutuzumab-Induced B Cell Depletion Reduces Spinal Cord Pathology in a CD20 Double Transgenic Mouse Model of Multiple Sclerosis

    Get PDF
    B cell-depleting therapies have recently proven to be clinically highly successful in the treatment of multiple sclerosis (MS). This study aimed to determine the effects of the novel type II anti-human CD20 (huCD20) monoclonal antibody (mAb) obinutuzumab (OBZ) on spinal cord degeneration in a B cell-dependent mouse model of MS. Double transgenic huCD20xHIGR3 (CD20dbtg) mice, which express human CD20, were immunised with the myelin fusion protein MP4 to induce experimental autoimmune encephalomyelitis (EAE). Both light and electron microscopy were used to assess myelination and axonal pathology in mice treated with OBZ during chronic EAE. Furthermore, the effects of the already established murine anti-CD20 antibody 18B12 were assessed in C57BL/6 wild-type (wt) mice. In both models (18B12/wt and OBZ/CD20dbtg) anti-CD20 treatment significantly diminished the extent of spinal cord pathology. While 18B12 treatment mainly reduced the extent of axonal pathology, a significant decrease in demyelination and increase in remyelination were additionally observed in OBZ-treated mice. Hence, the data suggest that OBZ could have neuroprotective effects on the CNS, setting the drug apart from the currently available type I anti-CD20 antibodies

    No neurochemical evidence of neuronal injury or glial activation in children with Pediatric Acute-onset Neuropsychiatric Syndrome: An explorative pilot study

    Get PDF
    OBJECTIVE: Paediatric Acute-onset Neuropsychiatric Syndrome (PANS) is characterised by an acute onset of obsessive compulsive disorder, combined with at least two other neuropsychiatric symptoms with acute onset. Diagnostic criteria also require that no specific medical aetiology is identified. Although there are no verified aetiological biomarkers, PANS is assumed to be a neuroinflammatory disorder with a possible autoimmune aetiology. Neurochemical markers such as neurofilament light (NfL, a neuronal injury marker) and glial fibrillary acidic protein (GFAP, an astrocytic activation marker) have not been published for this patient group. METHOD: Blood samples from 17 children meeting diagnostic criteria for PANS, after assessment at a child neuropsychiatry clinic were analysed for serum concentrations of NfL and GFAP. Ten age-matched children without any neurological or psychiatric disorder served as a comparison group. RESULTS: No difference was found in mean NfL and mean GFAP serum concentrations between children with PANS and controls. CONCLUSION: Neuronal injury and astrocyte activation do not seem to be a major event in PANS. The study group was small, and even if findings may be reassuring for parents and patients, they should be interpreted with caution and verified in larger cohorts and possibly with other markers in both serum and CSF

    Association between Plasma Homocysteine Levels and Neuronal Injury in HIV Infection

    Get PDF
    OBJECTIVE: To investigate the role of homocysteine in neuronal injury in HIV infection. METHODS: Using a cross-sectional design and archived samples, we compared concentrations of plasma homocysteine and cerebrospinal fluid (CSF) neurofilament light protein (NFL), a sensitive marker of neuronal injury, in 83 HIV-1-infected subjects without antiretroviral treatment. We also analyzed plasma vitamin B12, serum folate, CSF, and plasma HIV RNA, the immune activation marker neopterin in CSF and serum, and albumin ratio as a marker of blood-brain barrier integrity. Twenty-two subjects provided a second sample median of 12.5 months after antiretroviral treatment initiation. RESULTS: A significant correlation was found between plasma homocysteine and CSF NFL concentrations in untreated individuals (r = 0.52, p < 0.0001). As expected, there was a significant inverse correlation between homocysteine and B12 (r = –0.41, p < 0.001) and folate (r = –0.40, p = < 0.001) levels. In a multiple linear regression analysis homocysteine stood out as an independent predictor of CSF NFL in HIV-1-infected individuals. The correlation of plasma homocysteine and CSF NFL was also present in the group receiving antiretroviral therapy (r = 0.51, p = 0.016). CONCLUSION: A correlation between plasma homocysteine and axonal injury, as measured by CSF NFL, was found in both untreated and treated HIV. While this study is not able to prove a causa

    Vortex Waves and Channel Capacity: Hopes and Reality

    Get PDF
    Several recent contributions have envisioned the possibility of increasing currently exploitable maximum channel capacity of a free space link, both at optical and radio frequencies, by using vortex waves, i.e. carrying Orbital Angular Momentum (OAM). Our objective is to disprove these claims by showing that they are in contradiction with very fundamental properties of Maxwellian fields. We demonstrate that the Degrees of Freedom (DoF) of the field cannot be increased by the helical phase structure of electromagnetic vortex waves beyond what can be done without invoking this property. We also show that the often-advocated over-quadratic power decay of OAM beams with distance does not play any fundamental role in the determination of the channel DoF.Comment: 8 pages, 7 figure
    • 

    corecore