24 research outputs found

    Characterization of a novel human serine protease that has extensive homology to bacterial heat shock endoprotease HtrA and is regulated by kidney ischemia.

    Get PDF
    We report the isolation and characterization of a cDNA encoding the novel mammalian serine protease Omi. Omi protein consists of 458 amino acids and has homology to bacterial HtrA endoprotease, which acts as a chaperone at low temperatures and as a proteolytic enzyme that removes denatured or damaged substrates at elevated temperatures. The carboxyl terminus of Omi has extensive homology to a mammalian protein called L56 (human HtrA), but unlike L56, which is secreted, Omi is localized in the endoplasmic reticulum. Omi has several novel putative protein-protein interaction motifs, as well as a PDZ domain and a Src homology 3-binding domain. Omi mRNA is expressed ubiquitously, and the gene is localized on human chromosome 2p12. Omi interacts with Mxi2, an alternatively spliced form of the p38 stress-activated kinase. Omi protein, when made in a heterologous system, shows proteolytic activity against a nonspecific substrate beta-casein. The proteolytic activity of Omi is markedly up-regulated in the mouse kidney following ischemia/reperfusion

    Regulation of HAX-1 anti-apoptotic protein by Omi/HtrA2 protease during cell death

    Get PDF
    Omi/HtrA2 is a nuclear-encoded mitochondrial serine protease that has a pro-apoptotic function in mammalian cells. Upon induction of apoptosis, Omi translocates to the cytoplasm and participates in caspase-dependent apoptosis by binding and degrading inhibitor of apoptosis proteins. Omi can also initiate caspase-independent apoptosis in a process that relies entirely on its ability to function as an active protease. To investigate the mechanism of Omi-induced apoptosis, we set out to isolate novel substrates that are cleaved by this protease. We identified HS1-associated protein X-1 (HAX-1), a mitochondrial anti-apoptotic protein, as a specific Omi interactor that is cleaved by Omi both in vitro and in vivo. HAX-1 degradation follows Omi activation in cells treated with various apoptotic stimuli. Using a specific inhibitor of Omi, HAX-1 degradation is prevented and cell death is reduced. Cleavage of HAX-1 was not observed in a cell line derived from motor neuron degeneration 2 mice that carry a mutated form of Omi that affects its proteolytic activity. Degradation of HAX-1 is an early event in the apoptotic process and occurs while Omi is still confined in the mitochondria. Our results suggest that Omi has a unique pro-apoptotic function in mitochondria that involves removal of the HAX-1 antiapoptotic protein. This function is distinct from its ability to activate caspase-dependent apoptosis in the cytoplasm by degrading inhibitor of apoptosis proteins

    Characterization of a novel and specific inhibitor for the pro-apoptotic protease Omi/HtrA2

    Get PDF
    Omi/HtrA2 is a mammalian serine protease with high homology to bacterial HtrA chaperones. Omi/HtrA2 is localized in mitochondria and is released to the cytoplasm in response to apoptotic stimuli. Omi/HtrA2 induces cell death in a caspase-dependent manner by interacting with the inhibitor of apoptosis protein as well as in a caspase-independent manner that relies on its protease activity. We describe the identification and characterization of a novel compound as a specific inhibitor of the proteolytic activity of Omi/HtrA2. This compound (ucf-101) was isolated in a high throughput screening of a combinatorial library using bacterially made Omi-(134-458) protease and fluorescein-casein as a generic substrate. ucf-101 showed specific activity against Omi/HtrA2 and very little activity against various other serine proteases. This compound has a natural fluorescence that was used to monitor its ability to enter mammalian cells. ucf-101, when tested in caspase-9 (-/-) null fibroblasts, was found to inhibit Omi/HtrA2-induced cell death

    The C-terminal tail of presenilin regulates Omi/HtrA2 protease activity

    Get PDF
    Presenilin mutations are responsible for most cases of autosomal dominant inherited forms of early onset Alzheimer disease. Presenilins play an important role in amyloid beta-precursor processing, NOTCH receptor signaling, and apoptosis. However, the molecular mechanisms by which presenilins regulate apoptosis are not fully understood. Here, we report that presenilin-1 (PS1) regulates the proteolytic activity of the serine protease Omi/HtrA2 through direct interaction with its regulatory PDZ domain. We show that a peptide corresponding to the cytoplasmic C-terminal tail of PS1 dramatically increases the proteolytic activity of Omi/HtrA2 toward the inhibitor of apoptosis proteins and beta-casein and induces cell death in an Omi/HtrA2-dependent manner. Consistent with these results, ectopic expression of full-length PS1, but not PS1 lacking the C-terminal PDZ binding motif, potentiated Omi/HtrA2-induced cell death. Our results suggest that the C terminus of PS1 is an activation peptide ligand for the PDZ domain of Omi/HtrA2 and may regulate the protease activity of Omi/HtrA2 after its release from the mitochondria during apoptosis. This mechanism of Omi/HtrA2 activation is similar to the mechanism of activation of the related bacterial DegS protease by the outer-membrane porins

    Omi/HtrA2 promotes cell death by binding and degrading the anti-apoptotic protein ped/pea-15

    Get PDF
    ped/pea-15 is a ubiquitously expressed 15-kDa protein featuring a broad anti-apoptotic function. In a yeast two-hybrid screen, the pro-apoptotic Omi/HtrA2 mitochondrial serine protease was identified as a specific interactor of the ped/pea-15 death effector domain. Omi/HtrA2 also bound recombinant ped/pea-15 in vitro and co-precipitated with ped/pea-15 in 293 and HeLa cell extracts. In these cells, the binding of Omi/HtrA2 to ped/pea-15 was induced by UVC exposure and followed the mitochondrial release of Omi/HtrA2 into the cytoplasm. Upon UVC exposure, cellular ped/pea-15 protein expression levels decreased. This effect was prevented by the ucf-101 specific inhibitor of the Omi/HtrA2 proteolytic activity, in a dose-dependent fashion. In vitro incubation of ped/pea-15 with Omi/HtrA2 resulted in ped/pea-15 degradation. In intact cells, the inhibitory action of ped/pea-15 on UVC-induced apoptosis progressively declined at increasing Omi/HtrA2 expression. This further effect of Omi/HtrA2 was also inhibited by ucf-101. In addition, ped/pea-15 expression blocked Omi/HtrA2 co-precipitation with the caspase inhibitor protein XIAP and caspase 3 activation. Thus, in part, apoptosis following Omi/HtrA2 mitochondrial release is mediated by reduction in ped/pea-15 cellular levels. The ability of Omi/HtrA2 to relieve XIAP inhibition on caspases is modulated by the relative levels of Omi/HtrA2 and ped/pea-15

    Omi/HtrA2 promotes cell death by binding and degrading the anti-apoptotic protein ped/pea-15

    Get PDF
    ped/pea-15 is a ubiquitously expressed 15-kDa protein featuring a broad anti-apoptotic function. In a yeast two-hybrid screen, the pro-apoptotic Omi/HtrA2 mitochondrial serine protease was identified as a specific interactor of the ped/pea-15 death effector domain. Omi/HtrA2 also bound recombinant ped/pea-15 in vitro and co-precipitated with ped/pea-15 in 293 and HeLa cell extracts. In these cells, the binding of Omi/HtrA2 to ped/pea-15 was induced by UVC exposure and followed the mitochondrial release of Omi/HtrA2 into the cytoplasm. Upon UVC exposure, cellular ped/pea-15 protein expression levels decreased. This effect was prevented by the ucf-101 specific inhibitor of the Omi/HtrA2 proteolytic activity, in a dose-dependent fashion. In vitro incubation of ped/pea-15 with Omi/HtrA2 resulted in ped/pea-15 degradation. In intact cells, the inhibitory action of ped/pea-15 on UVC-induced apoptosis progressively declined at increasing Omi/HtrA2 expression. This further effect of Omi/HtrA2 was also inhibited by ucf-101. In addition, ped/pea-15 expression blocked Omi/HtrA2 co-precipitation with the caspase inhibitor protein XIAP and caspase 3 activation. Thus, in part, apoptosis following Omi/HtrA2 mitochondrial release is mediated by reduction in ped/pea-15 cellular levels. The ability of Omi/HtrA2 to relieve XIAP inhibition on caspases is modulated by the relative levels of Omi/HtrA2 and ped/pea-15

    Atf4 Interacts With Abro1/Kiaa0157 Scaffold Protein And Participates In A Cytoprotective Pathway

    Get PDF
    Abro1 (Abraxas brother 1), also known as KIAA0157, is a scaffold protein that recruits various polypeptides to assemble the BRISC (BRCC36 isopeptide) deubiquitinating enzyme (DUB) complex. The BRISC enzyme has a Lys63-linked deubiquitinating activity and is comprised of four known subunits: MERIT40 (mediator of Rap80 interactions and targeting 40. kDa), BRE (brain and reproductive organ-expressed), BRCC36 (BRCA1/BRCA2-containing complex, subunit 3) and Abro1. We have previously shown that Abro1 has a cytoprotective role that involves the BRISC DUB complex acting on specific Lys63-linked polyubiquitinated substrates. In this report we identify three members of the AP-1 (activating protein-1) family, the ATF4, ATF5 (activating transcription factor) and JunD proteins, as specific interactors of Abro1. The function of ATF4-Abro1 interaction was investigated under normal conditions as well as under cellular stress. Abro1 is predominantly cytoplasmic, but during cellular stress it enters the nucleus and co-localizes with ATF4. Furthermore, this interaction with ATF4 is necessary and essential for the cytoprotective function of Abro1 following oxidative stress. The ability of Abro1 to specifically interact with a number of transcription factors suggests a new mechanism of regulation of the BRISC DUB complex. This regulation involves the participation of at least three known members of the AP-1 family of transcription factors. © 2012 Elsevier B.V

    Atf4 Interacts With Abro1/Kiaa0157 Scaffold Protein And Participates In A Cytoprotective Pathway

    No full text
    Abro1 (Abraxas brother 1), also known as KIAA0157, is a scaffold protein that recruits various polypeptides to assemble the BRISC (BRCC36 isopeptide) deubiquitinating enzyme (DUB) complex. The BRISC enzyme has a Lys63-linked deubiquitinating activity and is comprised of four known subunits: MERIT40 (mediator of Rap80 interactions and targeting 40. kDa), BRE (brain and reproductive organ-expressed), BRCC36 (BRCA1/BRCA2-containing complex, subunit 3) and Abro1. We have previously shown that Abro1 has a cytoprotective role that involves the BRISC DUB complex acting on specific Lys63-linked polyubiquitinated substrates. In this report we identify three members of the AP-1 (activating protein-1) family, the ATF4, ATF5 (activating transcription factor) and JunD proteins, as specific interactors of Abro1. The function of ATF4-Abro1 interaction was investigated under normal conditions as well as under cellular stress. Abro1 is predominantly cytoplasmic, but during cellular stress it enters the nucleus and co-localizes with ATF4. Furthermore, this interaction with ATF4 is necessary and essential for the cytoprotective function of Abro1 following oxidative stress. The ability of Abro1 to specifically interact with a number of transcription factors suggests a new mechanism of regulation of the BRISC DUB complex. This regulation involves the participation of at least three known members of the AP-1 family of transcription factors. © 2012 Elsevier B.V

    Dynamic Biological Systems Characterization Using Non-Stationary Stochastic Optical Probe

    No full text
    Enhanced fluctuations of integrated scattered intensity in response to non-stationary random illumination are exploited to characterize the spatial and temporal properties of complex biological systems. To reduce radiant energy density applied to the sample, we demonstrated experimentally the effectiveness of a compressive sensing approach

    Mulan E3 Ubiquitin Ligase Interacts With Multiple E2 Conjugating Enzymes And Participates In Mitophagy By Recruiting Gabarap

    No full text
    Mulan is an E3 ubiquitin ligase embedded in the outer mitochondrial membrane (OMM) with its RING finger facing the cytoplasm and a large domain located in the intermembrane space (IMS). Mulan is known to have an important role in cell growth, cell death, and more recently in mitophagy. The mechanism of its function is poorly understood; but as an E3 ligase it is expected to interact with specific E2 ubiquitin conjugating enzymes and these complexes will bind and ubiquitinate specific substrates. The unique topology of Mulan can provide a direct link of communicating mitochondrial signals to the cytoplasm. Our studies identified four different E2 conjugating enzymes (Ube2E2, Ube2E3, Ube2G2 and Ube2L3) as specific interactors of Mulan. Each of these E2 conjugating enzymes was fused to the RING finger domain of Mulan and used in a modified yeast two-hybrid screen. Several unique interactors for each Mulan-E2 complex were isolated. One such specific interactor of Mulan-Ube2E3 was the GABARAP (GABAA receptor-associated protein). GABARAP is a member of the Atg8 family of proteins that plays a major role in autophagy/mitophagy. The interaction of GABARAP with Mulan-Ube2E3 required an LC3-interacting region (LIR) located in the RING finger domain of Mulan as well as the presence of Ube2E3. The isolation of four different E2 conjugating enzymes, as specific partners of Mulan E3 ligase, suggests that Mulan is involved in multiple biological pathways. In addition, the interaction of GABARAP with Mulan-Ube2E3 supports the role of Mulan as an important regulator of mitophagy and provides a plausible mechanism for its function in this process
    corecore