493 research outputs found

    Microbial Production of 3-hydroxypropionaldehyde from Glycerol Bioconversion

    Get PDF
    3-Hydroxypropionaldehyde (3-HPA) is of high industrial interest as a new platform intermediate from bioconversion of renewable materials because it can be converted into a number of large scale commodity chemicals. In this work we studied the production of 3-HPA from bioconversion of glycerol in a two-stage process. In the first stage active biomass is produced. The active biomass is then used for the production of 3-HPA in a second stage by biotransformation with the help of semicarbazide to trap 3-HPA from the culture. First we optimized the conditions for active biomass production for the biotransformation in the second step. By using a fed-batch process with proper feeding of semicarbazide and supplementary addition of active biomass we reached a final concentration of 54 g/l 3-HPA with a yield of 97 %mol/mol. This represents the highest 3-HPA concentration and yield reported so far for the microbial production of 3-HPA from glycerol

    Green's function approach to the magnetic properties of the kagome antiferromagnet

    Full text link
    The S=1/2S=1/2 Heisenberg antiferromagnet is studied on the kagom\'e lattice by using a Green's function method based on an appropriate decoupling of the equations of motion. Thermodynamic properties as well as spin-spin correlation functions are obtained and characterize this system as a two-dimensional quantum spin liquid. Spin-spin correlation functions decay exponentially with distance down to low temperature and the calculated missing entropy at T=0 is found to be 0.46ln20.46\ln{2}. Within the present scheme, the specific heat exhibits a single peak structure and a T2T^2 dependence at low temperature.Comment: 6 (two-column revtex4) pages, 5 ps figures. Submitted to Phys. Rev.

    Hidden long range order in Heisenberg Kagome antiferromagnets

    Full text link
    We give a physical picture of the low-energy sector of the spin 1/2 Heisenberg Kagome antiferromagnet (KAF). It is shown that Kagome lattice can be presented as a set of stars which are arranged in a triangular lattice and contain 12 spins. Each of these stars has two degenerate singlet ground states which can be considered in terms of pseudospin. As a result of interaction between stars we get Hamiltonian of the Ising ferromagnet in magnetic field. So in contrast to the common view there is a long range order in KAF consisting of definite singlet states of the stars.Comment: 4 pages, 3 figures, submitted to Physical Review Letter

    Susceptibility and dilution effects of the kagome bi-layer geometrically frustrated network. A Ga-NMR study of SrCr_(9p)Ga_(12-9p)O_(19)

    Full text link
    We present an extensive gallium NMR study of the geometrically frustrated kagome bi-layer compound SrCr_(9p)Ga_(12-9p)O_(19) (Cr^3+, S=3/2) over a broad Cr-concentration range (.72<p<.95). This allows us to probe locally the kagome bi-layer susceptibility and separate the intrinsic properties due to the geometric frustration from those related to the site dilution. Our major findings are: 1) The intrinsic kagome bi-layer susceptibility exhibits a maximum in temperature at 40-50 K and is robust to a dilution as high as ~20%. The maximum reveals the development of short range antiferromagnetic correlations; 2) At low-T, a highly dynamical state induces a strong wipe-out of the NMR intensity, regardless of dilution; 3) The low-T upturn observed in the macroscopic susceptibility is associated to paramagnetic defects which stem from the dilution of the kagome bi-layer. The low-T analysis of the NMR lineshape suggests that the defect can be associated with a staggered spin-response to the vacancies on the kagome bi-layer. This, altogether with the maximum in the kagome bi-layer susceptibility, is very similar to what is observed in most low-dimensional antiferromagnetic correlated systems; 4) The spin glass-like freezing observed at T_g=2-4 K is not driven by the dilution-induced defects.Comment: 19 pages, 19 figures, revised version resubmitted to PRB Minor modifications: Fig.11 and discussion in Sec.V on the NMR shif

    Freezing and large time scales induced by geometrical frustration

    Full text link
    We investigate the properties of an effective Hamiltonian with competing interactions involving spin and chirality variables, relevant for the description of the {\it trimerized} version of the spin-1/2 {\it kagome} antiferromagnet. Using classical Monte Carlo simulations, we show that remarkable behaviors develop at very low temperatures. Through an {\it order by disorder} mechanism, the low-energy states are characterized by a dynamical freezing of the chiralities, which decouples the lattice into ``dimers'' and ``triangles'' of antiferromagnetically coupled spins. Under the presence of an external magnetic field, the particular topology of the chiralities induces a very slow spin dynamics, reminiscent of what happens in ordinary spin glasses.Comment: 12 pages, 13 figure

    Dynamics of Entanglement in One-Dimensional Spin Systems

    Full text link
    We study the dynamics of quantum correlations in a class of exactly solvable Ising-type models. We analyze in particular the time evolution of initial Bell states created in a fully polarized background and on the ground state. We find that the pairwise entanglement propagates with a velocity proportional to the reduced interaction for all the four Bell states. Singlet-like states are favored during the propagation, in the sense that triplet-like states change their character during the propagation under certain circumstances. Characteristic for the anisotropic models is the instantaneous creation of pairwise entanglement from a fully polarized state; furthermore, the propagation of pairwise entanglement is suppressed in favor of a creation of different types of entanglement. The ``entanglement wave'' evolving from a Bell state on the ground state turns out to be very localized in space-time. Further support to a recently formulated conjecture on entanglement sharing is given.Comment: 25 pages, 21 figures; revte

    Immunohistochemical detection of macrophage migration inhibitory factor in fetal and adult bovine epididymis: Release by the apocrine secretion mode?

    Get PDF
    Originally defined as a lymphokine inhibiting the random migration of macrophages, the macrophage migration inhibitory factor (MIF) is an important mediator of the host response to infection. Beyond its function as a classical cytokine, MIF is currently portrayed as a multifunctional protein with growth-regulating properties present in organ systems beyond immune cells. In previous studies, we detected substantial amounts of MIF in the rat epididymis and epididymal spermatozoa, where it appears to play a role during post-testicular sperm maturation and the acquisition of fertilization ability. To explore its presence in other species not yet examined in this respect, we extended the range of studies to the bull. Using a polyclonal antibody raised against MIF purified from bovine eye lenses, we detected MIF in the epithelium of the adult bovine epididymis with the basal cells representing a prominently stained cell type. A distinct accumulation of MIF at the apical cell pole of the epithelial cells and in membranous vesicles localized in the lumen of the epididynnal duct was obvious. In the fetal bovine epididymis, we also detected MIF in the epithelium, whereas MIF accumulation was evident at the apical cell surface and in apical protrusions. By immuno-electron microscopy of the adult bovine epididymis, we localized MIF in apical protrusions of the epithelial cells and in luminal membrane-bound vesicles that were found in close proximity to sperm cells. Although the precise origin of the MIF-containing vesicles remains to be delineated, our morphological observations support the hypothesis that they become detached from the apical surface of the epididymal epithelial cells. Additionally, an association of MIF with the outer dense fibers of luminal spermatozoa was demonstrated. Data obtained in this study suggest MIF release by an apocrine secretion mode in the bovine epididymis. Furthermore, MIF localized in the basal cells of the epithelium and in the connective tissue could be responsible for regulating the migration of macrophages in order to avoid contact of immune cells with spermatozoa that carry a wide range of potent antigens. Copyright (c) 2006 S. Karger AG, Basel

    Smectic ordering in liquid crystal - aerosil dispersions I. X-ray scattering

    Full text link
    Comprehensive x-ray scattering studies have characterized the smectic ordering of octylcyanobiphenyl (8CB) confined in the hydrogen-bonded silica gels formed by aerosil dispersions. For all densities of aerosil and all measurement temperatures, the correlations remain short range, demonstrating that the disorder imposed by the gels destroys the nematic (N) to smectic-A (SmA) transition. The smectic correlation function contains two distinct contributions. The first has a form identical to that describing the critical thermal fluctuations in pure 8CB near the N-SmA transition, and this term displays a temperature dependence at high temperatures similar to that of the pure liquid crystal. The second term, which is negligible at high temperatures but dominates at low temperatures, has a shape given by the thermal term squared and describes the static fluctuations due to random fields induced by confinement in the gel. The correlation lengths appearing in the thermal and disorder terms are the same and show strong variation with gel density at low temperatures. The temperature dependence of the amplitude of the static fluctuations further suggests that nematic susceptibility become suppressed with increasing quenched disorder. The results overall are well described by a mapping of the liquid crystal-aerosil system into a three dimensional XY model in a random field with disorder strength varying linearly with the aerosil density.Comment: 14 pages, 13 figure

    Quantum disorder in the two-dimensional pyrochlore Heisenberg antiferromagnet

    Full text link
    We present the results of an exact diagonalization study of the spin-1/2 Heisenberg antiferromagnet on a two-dimensional version of the pyrochlore lattice, also known as the square lattice with crossings or the checkerboard lattice. Examining the low energy spectra for systems of up to 24 spins, we find that all clusters studied have non-degenerate ground states with total spin zero, and big energy gaps to states with higher total spin. We also find a large number of non-magnetic excitations at energies within this spin gap. Spin-spin and spin-Peierls correlation functions appear to be short-ranged, and we suggest that the ground state is a spin liquid.Comment: 7 pages, 11 figures, RevTeX minor changes made, Figure 6 correcte

    On the magnetism of Ln{2/3}Cu{3}Ti{4}O{12} (Ln = lanthanide)

    Get PDF
    The magnetic and thermodynamic properties of the complete Ln2/3_{2/3}Cu3_3Ti4_4O12_{12} series were investigated. Here LnLn stands for the lanthanides La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. %Most of the compounds were prepared as single phase polycrystalline powder %without any traces of impurities. Marginal amounts of %impurities (<2(< 2%) were detected Ln=Ln= Gd, Er, and Tm. %Significant amounts of impurity phases were found for Ln=Ln= Ce and Yb. All the samples investigated crystallize in the space group Im3ˉIm\bar{3} with lattice constants that follow the lanthanide contraction. The lattice constant of the Ce compound reveals the presence of Ce4+^{4+} leading to the composition Ce1/2_{1/2}Cu3_3Ti4_4O12_{12}. From magnetic susceptibility and electron-spin resonance experiments it can be concluded that the copper ions always carry a spin S=1/2S=1/2 and order antiferromagnetically close to 25\,K. The Curie-Weiss temperatures can approximately be calculated assuming a two-sublattice model corresponding to the copper and lanthanide ions, respectively. It seems that the magnetic moments of the heavy rare earths are weakly coupled to the copper spins, while for the light lanthanides no such coupling was found. The 4f4f moments remain paramagnetic down to the lowest temperatures, with the exception of the Tm compound, which indicates enhanced Van-Vleck magnetism due to a non-magnetic singlet ground state of the crystal-field split 4f4f manifold. From specific-heat measurements we accurately determined the antiferromagnetic ordering temperature and obtained information on the crystal-field states of the rare-earth ions. The heat-capacity results also revealed the presence of a small fraction of Ce3+^{3+} in a magnetic 4f14f^1 state.Comment: 10 pages, 10 figure
    corecore