7 research outputs found
Magnetic interactions and spin dynamics in the bond-disordered pyrochlore fluoride NaCaCoF
We report high-frequency/high-field electron spin resonance (ESR) and
high-field magnetization studies on single crystals of the bond-disordered
pyrochlore NaCaCoF. Frequency- and temperature-dependent ESR
investigations above the freezing temperature K reveal the
coexistence of two distinct magnetic phases. A cooperative paramagnetic phase,
evidenced by a gapless excitation mode, is found as well as a spin-glass phase
developing below 20 K which is associated with a gapped low-energy excitation.
Effective -factors close to 2 are obtained for both modes in line with
pulsed high-field magnetization measurements which show an unsaturated
isotropic behavior up to 58 T at 2 K. In order to describe the field-dependent
magnetization in high magnetic fields, we propose an empirical model accounting
for highly anisotropic ionic -tensors expected for this material and taking
into account the strongly competing interactions between the spins which lead
to a frustrated ground state. As a detailed quantitative relation between
effective -factors as determined from ESR and the local -tensors obtained
by neutron scattering [Ross et al., Phys. Rev. B 93, 014433 (2016)] is still
sought after, our work motivates further theoretical investigations of the
low-energy excitations in bond-disordered pyrochlores.Comment: 9 pages, 6 figure
CCDC 1839002: Experimental Crystal Structure Determination
Related Article: Machteld E. Kamminga, Maria Azhar, Julian Zeisner, Anna M. C. Maan, Bernd Büchner, Vladislav Kataev, Jacob Baas, Graeme R. Blake, Maxim Mostovoy, Thomas T. M. Palstra|2018|Phys. Rev. Mater.|2|064405|doi:10.1103/PhysRevMaterials.2.064405,An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.