5 research outputs found

    Figure 5

    No full text
    <p>Panel A: Titration curves with 150 pH measurements per curve of (a) human saliva, (b) 10 µM (0.1%) amyloglucosidase, 340 µM (0.5%) lysozyme, 10 mM hydrogencarbonate and 5 mM <i>di</i>-hydrogenphosphate (model system I) and (c) 10 µM (0.1%) amyloglucosidase, 40 µM (0.2%) α-amylase, 10 mM hydrogencarbonate and 5 mM <i>di</i>-hydrogenphosphate (model system II). Panel B: Titration curve with 150 pH measurements per curve of (a) titration curve with 150 averaged pH measurements (5 per pH measurement point) of 5 male subjects with standard deviations indicated by grey bars. (b) 10 µM (0.1%) amyloglucosidase, 340 µM (0.5%) lysozyme, 10 mM hydrogencarbonate and 5 mM <i>di</i>-hydrogenphosphate, (c) 10 µM (0.1%) amyloglucosidase, 40 µM (0.2%) α-amylase, 10 mM hydrogencarbonate and 5 mM <i>di</i>-hydrogenphosphate (model system II).</p

    Figure 2

    No full text
    <p>Titration curves with 86 pH measurements per curve of (a) 340 µM (0.5%) lysozyme in water, (b) 10 µM (0.1%) amyloglucosidase in water, (c) 10 µM (0.1%) amyloglucosidase plus 340 µM (0.5%) lysozyme in water, (d) 40 µM (0.2%) α-amylase and (e) 10 µM (0.1%) amyloglucosidase, 40 µM (0.2%) α-amylase.</p

    Figure 4

    No full text
    <p>Titration curves with 80 pH measurements per curve of purified salivary protein from 10 ml saliva. Saliva samples were taken at (a) 9:00 am, (b) 13:00 and (c) 17:00. Next to the titration curves the corresponding electropherograms sections containing proteins from 50 to 110 kDa are shown. Proteins were visualized by modified ruthenium (ii) tris bathophenantroline staining.</p

    Figure 1

    No full text
    <p>Titration curves with 150 pH measurements per curve of (a) 5 mM <i>di</i>-hydrogenphosphate, (b) 10 mM hydrogencarbonate, (c) 10 mM hydrogencarbonate plus 5 mM <i>di</i>-hydrogenphosphate, (d) 10 µM (0.1%) amyloglucosidase, 340 µM (0.5%) lysozyme, 10 mM hydrogencarbonate and 5 mM <i>di</i>-hydrogenphosphate (model system I), (e) 10 µM (0.1%) amyloglucosidase, 40 µM (0.2%) α-amylase, 10 mM hydrogencarbonate and 5 mM <i>di</i>-hydrogenphosphate (model system II) and (f) deionized water. The calculated buffer power is indicated in µmol per 10 ml of the analytes, in the internal scale.</p

    Poly(ethylene oxide)‑<i>b</i>‑poly(3-sulfopropyl methacrylate) Block Copolymers for Calcium Phosphate Mineralization and Biofilm Inhibition

    No full text
    Poly­(ethylene oxide) (PEO) has long been used as an additive in toothpaste, partly because it reduces biofilm formation on teeth. It does not, however, reduce the formation of dental calculus or support the remineralization of dental enamel or dentine. The present article describes the synthesis of new block copolymers on the basis of PEO and poly­(3-sulfopropyl methacrylate) blocks using atom transfer radical polymerization. The polymers have very large molecular weights (over 10<sup>6</sup> g/mol) and are highly water-soluble. They delay the precipitation of calcium phosphate from aqueous solution but, upon precipitation, lead to relatively monodisperse hydroxyapatite (HAP) spheres. Moreover, the polymers inhibit the bacterial colonization of human enamel by <i>Streptococcus gordonii</i>, a pioneer bacterium in oral biofilm formation, in vitro. The formation of well-defined HAP spheres suggests that a polymer-induced liquid precursor phase could be involved in the precipitation process. Moreover, the inhibition of bacterial adhesion suggests that the polymers could be utilized in caries prevention
    corecore