56 research outputs found

    Corrigendum to: The TianQin project: current progress on science and technology

    Get PDF
    In the originally published version, this manuscript included an error related to indicating the corresponding author within the author list. This has now been corrected online to reflect the fact that author Jun Luo is the corresponding author of the article

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    A hierarchical simple particle swarm optimization with mean dimensional information

    No full text
    International audienc

    IL-8 is a novel prometastatic chemokine in intrahepatic cholangiocarcinoma that induces CXCR2-PI3K/AKT signaling upon CD97 activation

    No full text
    Abstract Intrahepatic cholangiocarcinoma (ICC) is a rare but highly aggressive malignant tumor arising within the liver, with a 5-year survival rate of only 20–40% after surgery. The role of interleukin-8 (IL-8) in ICC progression remains elusive. A transcriptomic approach based on IL-8 stimulation first revealed significant upregulation of the prometastatic gene CD97 and key epithelial–mesenchymal transition (EMT) factors E-cadherin and vimentin. Immunohistochemistry of 125 ICC tissues confirmed the positive correlation between IL-8 and CD97. Multivariable Cox regression indicated that they are both independent predictors of ICC prognosis. Mechanistically, IL-8 treatment induced CD97 expression at 50 and 100 ng/ml in QBC-939 and QBE cells, respectively. Moreover, the induction of cell migration and invasion upon IL-8 treatment was attenuated by CD97 RNA interference, and the expression of EMT-associated genes was dramatically inhibited. To determine whether CXCR1 or CXCR2 are downstream effectors of IL-8, siCXCR2 was applied and shown to significantly attenuate the oncogenic effects of IL-8 by inhibiting the phosphorylation of PI3K/AKT. Finally, the induction of CD97 expression by the PI3K pathway was verified by treatment with the inhibitor LY294002. In vivo, the significant tumor growth and lung metastasis effects induced by intraperitoneal injection of IL-8 were greatly inhibited by silencing CD97 in nude mice. Collectively, the study presents a novel mechanism of the IL-8-CXCR2-PI3K/AKT axis in regulating CD97 expression, which leads to ICC metastasis mainly through EMT. The study may provide alternatives for targeting the tumor microenvironment in metastatic ICC

    The plateau effects and crystal transition study in Tetrahydrofuran (THF)/CO2/H-2 hydrate formation processes

    No full text
    Hydrate-based carbon dioxide (CO2) capture and hydrogen (H-2) purification is a promising technology in clean energy fields. In this work, in order to reveal the effect and mechanism of tetrahydrofuran (THF) on the hydrate based CO2 separation from Integrated Gasification Combined Cycle (IGCC) syngas, the CO2/H-2/THF hydrates formation processes were studied with and without memory effect. According to the pressure drop curves, there appear two pressure plateaus in the CO2/H-2/THF hydrate formation processes. Furthermore, with the usage frequency of the THF solution increasing, the plateau effects are more ambiguous and difficult to be observed. It is interesting that the Raman spectra for CO2 and H-2 molecules also reveal slim Raman shifts between the two different hydrate plateaus. According to the powder X-ray diffraction (PXRD) patterns, indeed, the detail Miller indices indicates that CO2/H-2/THF hydrate mainly forms THF center dot 16.8 H2O structure in the first plateau, while mainly forms THF center dot 17 H2O structure in the second plateau. The reason for this phenomenon is mainly the influence of CO2, its large molecular size and the localized tension it causes in the water network of the small cages which can enhance the storage capability for the large cages of THF hydrate. The experimental results illustrate that the highest Split fraction (S.Fr) is 69.02% obtained at 6 MPa/284.85 K (memory effect), and this work highlights that the memory solution are more suitable for industrial application
    corecore