180 research outputs found

    Scaling of variables and the relation between noncommutative parameters in Noncommutative Quantum Mechanics

    Full text link
    We consider Noncommutative Quantum Mechanics with phase space noncommutativity. In particular, we show that a scaling of variables leaves the noncommutative algebra invariant, so that only the self-consistent effective parameters of the model are physically relevant. We also discuss the recently proposed relation of direct proportionality between the noncommutative parameters, showing that it has a limited applicability.Comment: Revtex4, 4 pages; version to match the published on

    Astrophysical constraints on the confining models : the Field Correlator Method

    Get PDF
    We explore the relevance of confinement in quark matter models for the possible quark core of neutron stars. For the quark phase, we adopt the equation of state (EoS) derived with the Field Correlator Method, extended to the zero temperature limit. For the hadronic phase, we use the microscopic Brueckner-Hartree-Fock many-body theory. We find that the currently adopted value of the gluon condensate G20.0060.007GeV4G_2 \simeq 0.006-0.007 \rm {GeV^4}, which gives a critical temperature Tc170MeVT_c \simeq 170 \rm MeV, produces maximum masses which are only marginally consistent with the observational limit, while larger masses are possible if the gluon condensate is increased.Comment: 7 pages, 5 figure

    An alternative heavy Higgs mass limit

    Full text link
    After commenting on the present value of the Higgs particle mass from radiative corrections, we explore the phenomenological implications of an alternative, non-perturbative renormalization of the scalar sector where the mass of the Higgs particle does not represent a measure of observable interactions at the Higgs mass scale. In this approach the Higgs particle could be very heavy, even heavier than 1 TeV, and remain nevertheless a relatively narrow resonance.Comment: 17 pages. Version accepted for publication in Journal of Physics

    Nonuniform symmetry breaking in noncommutative λΦ4\lambda \Phi^4 theory

    Full text link
    The spontaneous symmetry breaking in noncommutative λΦ4\lambda\Phi^4 theory has been analyzed by using the formalism of the effective action for composite operators in the Hartree-Fock approximation. It turns out that there is no phase transition to a constant vacuum expectation of the field and the broken phase corresponds to a nonuniform background. By considering =Acos(Qx)=A \cos(\vec Q \cdot \vec x) the generated mass gap depends on the angles among the momenta k\vec k and Q\vec Q and the noncommutativity parameter θ\vec\theta. The order of the transition is not easily determinable in our approximation.Comment: 18 pages, 4 figures, added reference

    Autoimmune liver disease in a sicilian woman.

    Get PDF
    Autoimmune hepatitis (AIH) is a chronic liver disease characterized by clinical features analogue to viral and non-autoimmune liver disorders, but with distinct sero-autoimmunologic properties. The disease results from a network of complex interactions involving genetic predisposition, triggering factors, autoantigens and immunoregulatory system. Diagnosis of AIH relies on positive autoantibodies determination and on liver core biopsy histological appearance. Corticosteroid and immunosuppressive drugs are generally useful in the treatment of disease. However, when inflammation cannot be controlled, progression from chronic hepatitis to cirrhosis is often observed and hepatocellular carcinoma may appear at the end stage. Here we reported a case of a woman, affected with AIH. The patient presented features of chronic liver disease of neither viral nor alcoholic aetiology. Serum evidence of hypertraminasemia, hypergammaglobulinemia and specific autoantibodies were the leading points to final diagnosis, which was validated by liver biopsy. The patient was, finally, successfully treated with steroids

    The s-process weak component: uncertainties due to convective overshooting

    Full text link
    Using a new s-nucleosynthesis code, coupled with the stellar evolution code Star2003, we performed simulations to study the impact of the convection treatment on the s-process during core He-burning of a 25 Msun star (ZAMS mass) with an initial metallicity of Z=0.02. Particular attention was devoted to the impact of the extent of overshooting on the s-process efficiency. The results show enhancements of about a factor 2-3 in s-process efficiency (measured as the average overproduction factor of the 6 s-only nuclear species with 60A9060\lesssim A\lesssim 90) with overshooting parameter values in the range 0.01-0.035, compared to results obtained with the same model but without overshooting. The impact of these results on the p-process model based on type II supernovae is discussed.Comment: 7 pages, 4 figures, accepted for publication in Astronomy & Astrophysic

    Convective overshooting and production of s-nuclei in massive stars during their core He-burning phase

    Full text link
    With the "post-processing" technique we explore the role of the convective overshooting on the production of s-nuclei in stellar models of different initial mass and metallicity (15MZAMS/M2515 \leq M_{ZAMS}/M_{\odot} \leq 25; 104Z0.0210^{-4} \leq Z \leq 0.02), considering a range of values for the parameter ff, which determines the overall efficiency of convective overshooting.We find enhancements in the production of s-nuclei until a factor 6\sim 6 (measured as the average overproduction factor of the 6 s-only nuclear species with 60A9060\lesssim A\lesssim90) in all our models of different initial mass and metallicity with ff in the range 0.010.0350.01{-}0.035 (i.e. models with overshooting) compared to the production obtained with "no-overshooting" models (i.e. models with the same initial mass and metallicity, but f=105f=10^{-5}). Moreover the results indicate that the link between the overshooting parameter ff and the s-process efficiency is essentially monotonic in all our models of different initial mass and metallicity. Also evident is the higher s-process efficiency when we progressively increase for a given f value both the mass of the models from 15 M_\odot to 25 M_\odot and the Z value from 104^{-4} to 0.02. We also briefly discuss the possible consequences of these results for some open questions linked to the s-process weak component efficiency, as well as a "rule of thumb" to evaluate the impact of the convective overshooting on the yields of a generation of stars.Comment: 12 pages, 6 figures, A&A accepted (corrected typos plus minor changes in order to fulfill the guidelines for A&A manuscripts
    corecore