14 research outputs found

    Scenarios of Solar Energy Use on the “Roof of the World” : Potentials and Environmental Benefits

    Get PDF
    Peripheral mountain areas in developing countries are often characterized by energy poverty but also by high solar energy potential. The Eastern Pamirs of Tajikistan are a prime example of this situation, with their lack of energy infrastructure, remoteness, pressure on local natural resources, and high incident radiation amounts. An integrative assessment of the potential for photovoltaic power generation is lacking for this region, as well as for many other mountain environments. We assessed the natural potential, feasibility, and likely effects of increased photovoltaic electricity generation, using climate data, biomass data, a spatial radiation model, and fieldwork- and literature-based scenarios of energy requirements and financial conditions. Results indicated that using a photovoltaic power plant to generate enough energy for boiling water is feasible in the study area within reasonable cost limits. This could significantly alleviate energy poverty, increase carbon sequestration by up to 1500 t/y, and reduce the loss of dwarf shrub stands by up to 2000 ha/y. Our results illustrate that the integrative approach presented in this article can be applied straightforwardly when some climatic measurements and field observations are available and that photovoltaic energy is an important renewable-energy resource for the sustainable development of peripheral high-mountain communities

    Potential of Space-Borne Hyperspectral Data for Biomass Quantification in an Arid Environment : Advantages and Limitations

    Get PDF
    In spite of considerable efforts to monitor global vegetation, biomass quantification in drylands is still a major challenge due to low spectral resolution and considerable background effects. Hence, this study examines the potential of the space-borne hyperspectral Hyperion sensor compared to the multispectral Landsat OLI sensor in predicting dwarf shrub biomass in an arid region characterized by challenging conditions for satellite-based analysis: The Eastern Pamirs of Tajikistan. We calculated vegetation indices for all available wavelengths of both sensors, correlated these indices with field-mapped biomass while considering the multiple comparison problem, and assessed the predictive performance of single-variable linear models constructed with data from each of the sensors. Results showed an increased performance of the hyperspectral sensor and the particular suitability of indices capturing the short-wave infrared spectral region in dwarf shrub biomass prediction. Performance was considerably poorer in the area with less vegetation cover. Furthermore, spatial transferability of vegetation indices was not feasible in this region, underlining the importance of repeated model building. This study indicates that upcoming space-borne hyperspectral sensors increase the performance of biomass prediction in the world’s arid environments

    Reanalysis datasets outperform other gridded climate products in vegetation change analysis in peripheral conservation areas of Central Asia

    Get PDF
    Abstract Global environmental research requires long-term climate data. Yet, meteorological infrastructure is missing in the vast majority of the world’s protected areas. Therefore, gridded products are frequently used as the only available climate data source in peripheral regions. However, associated evaluations are commonly biased towards well observed areas and consequently, station-based datasets. As evaluations on vegetation monitoring abilities are lacking for regions with poor data availability, we analyzed the potential of several state-of-the-art climate datasets (CHIRPS, CRU, ERA5-Land, GPCC-Monitoring-Product, IMERG-GPM, MERRA-2, MODIS-MOD10A1) for assessing NDVI anomalies (MODIS-MOD13Q1) in two particularly suitable remote conservation areas. We calculated anomalies of 156 climate variables and seasonal periods during 2001–2018, correlated these with vegetation anomalies while taking the multiple comparison problem into consideration, and computed their spatial performance to derive suitable parameters. Our results showed that four datasets (MERRA-2, ERA5-Land, MOD10A1, CRU) were suitable for vegetation analysis in both regions, by showing significant correlations controlled at a false discovery rate < 5% and in more than half of the analyzed areas. Cross-validated variable selection and importance assessment based on the Boruta algorithm indicated high importance of the reanalysis datasets ERA5-Land and MERRA-2 in both areas but higher differences and variability between the regions with all other products. CHIRPS, GPCC and the bias-corrected version of MERRA-2 were unsuitable and not important in both regions. We provide evidence that reanalysis datasets are most suitable for spatiotemporally consistent environmental analysis whereas gauge- or satellite-based products and their combinations are highly variable and may not be applicable in peripheral areas

    Measurements meet human observations : integrating distinctive ways of knowing in the Pamir Mountains of Tajikistan to assess local climate change

    Get PDF
    &lt;jats:title&gt;Abstract&lt;/jats:title&gt;&lt;jats:p&gt;In mountain environments dimensions of climate change are unclear because of limited availability of meteorological stations. However, there is a necessity to assess the scope of local climate change, as the livelihood and food systems of subsistence-based communities are already getting impacted. To provide more clarity about local climate trends in the Pamir Mountains of Tajikistan, this study integrates measured climate data with community observations in the villages of Savnob and Roshorv. Taking a transdisciplinary approach, both knowledge systems were considered as equally pertinent and mutually informed the research process. Statistical trends of temperature and snow cover were retrieved using downscaled ERA5 temperature data and the snow cover product MOD10A1. Local knowledge was gathered through community workshops and structured interviews and analysed using a consensus index. Results showed, that local communities perceived increasing temperatures in autumn and winter and decreasing amounts of snow and rain. Instrumental data records indicated an increase in summer temperatures and a shortening of the snow season in Savnob. As both knowledge systems entail their own strengths and limitations, an integrative assessment can broaden the understanding of local climate trends by (i) reducing existing uncertainties, (ii) providing new information, and (iii) introducing unforeseen perspectives. The presented study represents a time-efficient and global applicable approach for assessing local dimensions of climate change in data-deficient regions.&lt;/jats:p&gt

    Do Red Edge and Texture Attributes from High-Resolution Satellite Data Improve Wood Volume Estimation in a Semi-Arid Mountainous Region?

    Get PDF
    Remote sensing-based woody biomass quantification in sparsely-vegetated areas is often limited when using only common broadband vegetation indices as input data for correlation with ground-based measured biomass information. Red edge indices and texture attributes are often suggested as a means to overcome this issue. However, clear recommendations on the suitability of specific proxies to provide accurate biomass information in semi-arid to arid environments are still lacking. This study contributes to the understanding of using multispectral high-resolution satellite data (RapidEye), specifically red edge and texture attributes, to estimate wood volume in semi-arid ecosystems characterized by scarce vegetation. LASSO (Least Absolute Shrinkage and Selection Operator) and random forest were used as predictive models relating in situ-measured aboveground standing wood volume to satellite data. Model performance was evaluated based on cross-validation bias, standard deviation and Root Mean Square Error (RMSE) at the logarithmic and non-logarithmic scales. Both models achieved rather limited performances in wood volume prediction. Nonetheless, model performance increased with red edge indices and texture attributes, which shows that they play an important role in semi-arid regions with sparse vegetation

    Scenarios of Solar Energy Use on the “Roof of the World”: Potentials and Environmental Benefits

    No full text
    corecore