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“The Kirghiz had unhesitatingly told us that the object of our 
search was to be found in a lake upon the ‘Bam-i-duniah,’ or 
Roof of the World, in Pamir…” 

John Wood 1841, pp. 331-332 
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Abstract 
Energy issues have been a main concern of geographical research in the Eastern Pamirs 

of Tajikistan. Dwarf shrubs (Krascheninnikovia ceratoides, Artemisia spp.), as the only woody 
vegetation, are of central importance in this context by representing a key thermal energy 
resource. But despite their relevance for sustainable development, neither an assessment of 
woody biomass quantities nor an evaluation of potential alternatives has been conducted. 
Remote sensing and GIS techniques are considered as appropriate tools to study these 
objectives. However, common space-borne remote sensing methods reach their limits in 
such arid environments characterized by scarce vegetation cover. Therefore, the main 
research goals of this dissertation are to evaluate and extend existing remote sensing 
approaches and test different sensors for woody biomass quantification in drylands to 
contribute to the clarification of global earth observation problems. Furthermore, related 
empirical results are intended to shed light on the ongoing regional degradation debate. 
Finally, the feasibility of photovoltaic energy as an alternative local energy resource for 
sustainable development should be assessed. 

Field data represented the basis for the study by providing spatially allocated biomass 
amounts using an allometric model, climate measurements, and complementary information. 
A large number of remote sensing variables, potentially relevant for woody biomass 
prediction, according to the literature, were derived from the Landsat OLI, RapidEye, EO-1 
Hyperion and ASTER sensors. Several spectral variables were experimentally adapted to 
account for interfering background signals. Various techniques and models were applied to 
compare their performance in spatial biomass prediction. An interdisciplinary analysis 
including external survey data was used to contrast dwarf shrub availability, accessibility, and 
demand. An integrative study of field measurements, a spatial solar radiation model, 
framework scenarios, and literature based cost calculations provided the mean for an 
evaluation of the local photovoltaic energy potential and anticipated environmental effects. 

The results show that remote sensing based biomass quantification is possible even under 
the difficult arid conditions of the research area, but relatively high modeling errors have to 
be taken into account (RMSE ~1000 kg/ha). Statistical models with adequate selection 
procedures and shrinkage techniques proved to be important in this high dimensional 
setting. A performance assessment demonstrated that common vegetation indices are not 
successful and variables adjusting for soil effects are necessary in this region. The 
comparison of sensors indicated that a large spectral range, comprising plant as well as 
background information, is advantageous in dryland vegetation modeling. The hyperspectral 
sensor revealed an increased potential for woody biomass prediction, with the ability to 
reduce the relative RMSE by a maximum of 20 percentage points compared to multispectral 
data. Narrowband indices, calculated from the short wave infra-red spectral domain, showed 
to be particularly suitable for dwarf shrub detection. A conservative biomass model enabled 
the comparison of available dwarf shrub stocks with harvesting amounts in a case study 
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village by taking prediction errors and harvesting practices into account. Associated results 
suggest that locally, biomass quantities are sufficient to meet thermal energy demand on the 
medium term. However, restricted accessibility may limit future energy supply, and long-term 
sustainability is questionable due to the low regeneration rate of regional dwarf shrubs. The 
implemented spatial radiation model performed well in deriving solar energy amounts. The 
assessment of photovoltaic energy resources as substitutes for woody biomass showed that 
the generation of thermal energy is feasible within reasonable cost limits when restricted to 
certain basic applications. The estimations of the environmental effects of potentially 
increased photovoltaic infrastructure showed that it would result in a considerable mitigation 
of degraded areas and an amplification of carbon sequestration. This demonstrated the 
benefits of solar photovoltaic energy as an alternative renewable energy resource in 
peripheral arid high mountains. 

This dissertation provided contributions to the utilization of remote sensing and GIS 
techniques in drylands and high mountain regions. It was thereby shown that they offer 
valuable tools to resolve environmental research issues, but are also subject to major 
restrictions that require field based method adaptions. This study indicates that upcoming 
satellite sensors, earth observation products, and sophisticated statistical models will have 
much potential for regional and global research on natural resources in arid environments. 
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Zusammenfassung 
Energiefragen stellten im tadschikischen Ostpamir stets ein Schwerpunkt geographischer 

Forschung dar. In diesem Zusammenhang sind Zwergsträucher (Krascheninnikovia ceratoides, 
Artemisia spp.), die einzige verholzte Vegetation in der Region, von zentraler Bedeutung als 
thermische Energieressource. Jedoch wurde, trotz deren Wichtigkeit für eine nachhaltige 
Entwicklung, bisher weder eine Abschätzung der verholzten Biomassemengen noch eine 
Untersuchung potentieller Alternativen durchgeführt. Fernerkundung und GIS-Techniken 
werden als geeignete Werkzeuge für eine Analyse dieser Bereiche angesehen. Allerdings 
stoßen gebräuchliche weltraumbasierte Fernerkundungsmethoden in einer solch ariden 
Umwelt mit spärlicher Vegetationsdecke an ihre Grenzen. Daher sind die wichtigsten 
Forschungsziele dieser Dissertation die Evaluierung und die Erweiterung existierender 
Fernerkundungsansätze, sowie das Testen verschiedener Sensoren für eine 
Biomassenquantifizierung in Trockengebieten, um zu globalen Problemstellungen der 
Erdbeobachtung beizutragen. Des Weiteren sollen die damit verbundenen empirischen 
Ergebnisse zur Klärung der gegenwärtigen regionalen Degradationsdebatte beitragen. 
Schließlich soll die Umsetzbarkeit von Photovoltaikenergie als alternative lokale 
Energieressource für eine nachhaltige Entwicklung abgeschätzt werden. 

Durch die Bereitstellung räumlich verorteter Biomassemengen unter Nutzung eines 
allometrischen Modells, von Klimadaten und von zusätzlichen Informationen repräsentierten 
Felddaten die Basis dieser Studie. Eine große Zahl von fernerkundlichen Variablen, welche 
laut Literaturangaben wichtig für eine Modellierung verholzter Biomasse sein könnten, 
wurden von den Sensoren Landsat OLI, RapidEye, EO-1 Hyperion und ASTER abgeleitet. 
Eine Reihe spektraler Variablen wurde experimentell angepasst, um beeinflussende 
Hintergrundsignale zu berücksichtigen. Der Einsatz verschiedener Modelle und Techniken 
diente dem Eignungsvergleich für die räumliche Biomassemodellierung. Eine 
interdisziplinäre Betrachtung unter Einbeziehung externer Umfragedaten wurde 
herangezogen um Zwergstrauchverfügbarkeit, Zugänglichkeit und Bedarf 
gegenüberzustellen. Eine integrative Analyse, welche feldbasierte Messungen, ein räumliches 
Solarstrahlungsmodell, verschiedene Szenarien zu allgemeinen Rahmenbedingungen und 
literaturbasierte Kostenberechnungen vereint, wurde durchgeführt um das lokale 
Photovoltaikenergiepotential und erwartete Umwelteffekte zu evaluieren. 

Die Ergebnisse zeigen, dass fernerkundungsbasierte Biomassenquantifizierung auch unter 
den schwierigen ariden Bedingungen des Untersuchungsgebietes möglich ist, aber auch ein 
relativ hoher Modellierungsfehler berücksichtigt werden muss (RMSE ~1000 kg/ha). 
Statistische Modelle mit angemessenen Auswahlprozessen und Verkleinerungstechniken 
zeigten sich als wichtig in dieser hochdimensionalen Situation. Eine Leistungsabschätzung 
demonstrierte, dass herkömmliche Vegetationsindizes in diesen Regionen nicht erfolgreich 
sind und Variablen, welche Anpassungen an den Boden beinhalten, benötigt werden. Der 
Vergleich der Sensoren deutete darauf hin, dass eine große spektrale Abdeckung, welche 



 

ix 

 

sowohl Pflanzen- als auch Hintergrundinformationen einschließt, vorteilhaft in der 
Vegetationsmodellierung von Trockengebieten ist. Für den hyperspektralen Sensor konnte 
ein erhöhtes Potential zur Vorhersage verholzter Biomasse festgestellt werden. Dieser 
ermöglichte eine Verringerung des relativen RMSE um bis zu maximal 20 Prozentpunkte im 
Vergleich zu multispektralen Daten. Schmalbandindizes, welche aus Bändern der 
kurzwelligen Infrarotregion errechnet wurden, zeigten eine spezielle Eignung in der 
Erfassung von Zwergsträuchern. Durch die Berücksichtigung des Vorhersagefehlers und der 
Erntemethoden in einem konservativen Biomassemodell konnte der verfügbare 
Zwergstrauchbestand mit entsprechenden Erntemengen in einem Fallstudiendorf verglichen 
werden. Die Ergebnisse legen nahe, dass lokale Biomassemengen mittelfristig ausreichen, um 
den thermischen Energiebedarf zu decken. Eingeschränkte Zugänglichkeit könnte die 
zukünftige Energieversorgung jedoch beeinträchtigen und die langfristige Nachhaltigkeit ist 
auf Grund der langsamen Regenerationsrate der Zwergsträucher fragwürdig. Das 
implementierte räumliche Strahlungsmodell zeigte eine gute Leistung in der Ableitung 
verfügbarer Solarenergie. Die Bewertung von Photovoltaikenergieressourcen als Ersatz für 
verholzte Biomasse demonstrierte, dass die Erzeugung thermischer Energie innerhalb eines 
realistischen Kostenrahmens umsetzbar ist, wenn deren Einsatz auf bestimmte 
Basisanwendungen beschränkt wird. Die Abschätzung der Umwelteffekte in Folge des 
potentiellen Ausbaus der Photovoltaikinfrastruktur resultierte in der Erwartung einer 
deutlichen Verminderung degradierter Flächen und einer erhöhten Kohlenstofffixierung. Die 
Vorteile von solarer Photovoltaikenergie als alternative Energieressource in peripheren 
ariden Hochgebirgen wurden hierdurch dargelegt. 

Diese Dissertation lieferte Beträge zur Nutzung von Fernerkundungs- und GIS-
Techniken in Trockengebieten und Hochgebirgsregionen. Dabei wurde gezeigt, dass diese 
wertvolle Werkzeuge zur  Lösung umweltbezogener Forschungsfragen bieten, aber auch 
bedeutenden Einschränkungen unterliegen welche eine feldbasierte Methodenanpassung 
erfordern. Diese Studie legt nahe, dass zukünftige Satellitensensoren, 
Erdbeobachtungsprodukte und ausgereifte statistische Modelle ein hohes Potential für die 
regionale und globale Erforschung natürlicher Ressourcen in ariden Ökosystemen haben 
werden. 

  



 

x 

 

Резюме́ 
Энергетические вопросы были основной проблемой географических исследований 

на Восточном Памире Таджикистана. Карликовые кустарники (Krascheninnikovia ceratoides, 
Artemisia spp.), будучи единственной древесной растительностью, имеют центральное 
значение в этом контексте, являясь ключевым ресурсом для выработки тепловой 
энергии. Но, несмотря на их актуальность для устойчивого развития, ни 
количественная оценка древесной биомассы, ни оценка возможных альтернатив 
проведены не были. Методы дистанционного зондирования и технологии ГИС 
рассматривается как соответствующие инструменты для этих целей. Тем не менее, 
общие методы дистанционного зондирования космического происхождения 
достигают предела своих возможностей в засушливых условиях, характеризующимися 
скудным растительным покровом. Таким образом, основными научными целями 
данной диссертации являются оценка и распространение существующих подходов 
дистанционного зондирования и тестирования различных датчиков для определения 
количества древесной биомассы в засушливых районах, чтобы внести свой вклад в 
разъяснение глобальных проблем наблюдения Земли. Кроме того, соответствующие 
эмпирические результаты предназначены для, чтобы пролить свет на текущие 
региональные дебаты по деградации. Наконец, возможность фотоэлектрической 
энергии в качестве альтернативного местного энергетического ресурса для 
устойчивого развития должна быть оценена. 

Полевые данные послужили основой для исследования, посредством 
пространственно распределенной биомассы, используя аллометрическую модель, 
климатические измерения и дополнительную информацию. Большое количество 
переменных, основанных на отдаленном зондировании и имеющих потенциальное 
отношение к прогнозу древесной биомассы, согласно источникам, были получены с 
помощью датчиков Landsat Оли, RapidEye, ЕО-1 Гипериона (Hyperion) и АСТЕР 
(ASTER). Несколько спектральных переменных экспериментально приспособлены для 
учета влияния на фоновые сигналы. Различные методы и модели были применены, 
чтобы сравнить их производительность для прогноза пространственной биомассы. 
Междисциплинарный анализ, включая внешние данные обследования позволил 
сопоставить наличие карликовых кустарников, доступность и спрос. Интеграционное 
изучение полевых данных, пространственной модели излучения, рамочных сценариев 
и расчеты расходов, сделанных на основе изучения литературы, позволили провести 
оценку местного потенциала фотоэлектрической энергии и связанных с этим 
экологических последствий. 

Результаты показали, что количественное дистанционного зондирования на основе 
биомассы возможно даже в трудных, засушливых условиях области исследования, но 
относительно высокие ошибки моделирования должны быть приняты во внимание 
(RMSE/СКО ~ 1000 кг / га). Статистические модели с надлежащими процедурами 
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отбора и методов усадки являются важными в этой высокой размерной настройке. 
Оценка эффективности показала, что общие показатели растительности не были 
успешными, и регулирование переменных для эффектов почвы необходимы в этом 
регионе. Сравнение датчиков показали целесообразность большого спектрального 
диапазона в моделировании растительного покрова в засушливых областях, 
включающего растения, а также вводную информацию. Гиперспектральный датчик 
выявил повышенный потенциал для прогнозирования древесной биомассы с 
возможностью снижения относительного RMSE/СКО, максимум на 20 процентных 
пунктов по сравнению с мультиспектральными данными. Узкополосные индексы, 
рассчитанные на основе коротковолнового инфракрасного спектрального участка, в 
особенности подходят для обнаружения карликовых кустарников. Консервативная 
модель биомассы позволила провести сравнение имеющихся запасов карликовых 
кустарников с объёмом лесозаготовок на пилотном участке, принимая во внимание 
ошибки прогнозирования и практику лесозаготовок. Соответствующие результаты 
позволяют предположить, что на местном уровне, количество биомассы достаточно, 
чтобы удовлетворить спрос на тепловую энергию в среднесрочной перспективе. Тем 
не менее, ограниченный доступ может ограничить будущие поставки энергии, и 
долгосрочная устойчивость находится под вопросом из-за медленного восстановления 
региональных карликовых кустарников. Внедренная пространственная модель 
излучения продемонстрировала эффективность в процессе получения солнечной 
энергии. Оценка фотоэлектрических энергетических ресурсов, как заменителей 
древесной биомассы показали, что выработка тепловой энергии является возможной в 
приемлемых пределах стоимости при ограничении на некоторые основные 
приложения. Оценка экологических последствий от потенциально увеличенной 
фотоэлектрической инфраструктуры привели к значительному смягчению в 
пострадавших районах и усилению поглощения углерода. Это демонстрирует 
преимущество солнечной фотоэлектрической энергии в качестве альтернативного 
ресурса возобновляемой энергии в периферийных высокогорных областях. 

Данная диссертация внесла вклад в использование методов дистанционного 
зондирования и ГИС технологий в засушливых и высокогорных районах. Таким 
образом, было продемострировано, что они представляют собой ценные инструменты 
для решения проблем окружающей среды, но при условии наличия методов 
адаптации, основанных на полевых данных. Это исследование показывает, что 
предстоящие спутниковые датчики, результаты наблюдения Земли и сложные 
статистические модели имеют высокий потенциал для регионального и глобального 
исследования природных ресурсов засушливых условиях. 
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Preface 
This dissertation was prepared within the interdisciplinary research project 

“Transformation Processes in the Eastern Pamirs of Tajikistan. The presence and future of 
energy resources in the framework of sustainable development,” which started in March 
2012 and is funded by the Volkswagen Foundation1. The project aims to understand the 
utilization of energetic resources at the upper altitude limits of human habitation from a 
social sciences perspective, and their availability and accessibility using a natural scientific 
approach. The achieved results are subsequently integrated into an energetic model providing 
scenarios to develop sustainable management strategies in this peripheral high mountain 
region. 

In this context, the research team of the University of Bayreuth, headed by Prof. Cyrus 
Samimi, concentrates on the natural-scientific basis of the project. The main research topic 
of presented thesis focuses on the detection of woody biomass with remote sensing methods 
in an arid environment. Furthermore, the potential of solar energy as a ubiquitous resource 
should be evaluated to assess the feasibility of local alternatives for thermal energy 
generation. 

 

 

 

 

 

 

 

 

 

 

 

1 For more information please refer to http://www.klimatologie.uni-
bayreuth.de/homepage_samimi/samimi_research/index.html; accessed on 13 July 2015 

http://www.klimatologie.uni-bayreuth.de/homepage_samimi/samimi_research/index.html
http://www.klimatologie.uni-bayreuth.de/homepage_samimi/samimi_research/index.html
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1    Objectives and research questions 
Sustainable development against the background of limited resources is one of the most 

urgent issues worldwide. The generation of quantitative information on the availability and 
distribution of respective resources is a prerequisite for an adapted management. This is 
most obvious in developing peripheral regions that are characterized by restricted economic 
exchange structures. The Eastern Pamirs of Tajikistan, an arid high mountain plateau, are an 
illustrative example of this situation, with strong dependencies on locally available resources 
for the people’s livelihoods. Despite the relevance of perennial woody vegetation as fuel and 
forage source and the associated need for quantitative plant biomass information, a 
sophisticated assessment of this resource is missing. Therefore, a regional objective of this 
study is to generate information on spatially resolved woody biomass amounts in order to 
analyze its availability in relation to local accessibility and demand. Remote sensing appears as 
a suitable method to achieve this goal. However, existing remote sensing approaches reached 
their limits in the study area. This leads to a research field which is of importance to remote 
sensing science in general: the derivation of vegetation biomass amounts in drylands. Arid 
lands cover major parts of the planet’s land surface, and woody perennial vegetation plays a 
significant role, as it provides central ecosystem services in respective regions. Excessive 
exploitation of plant biomass, especially overgrazing and fuelwood consumption, may lead to 
degradation and desertification, which is considered a global concern. As the extensive arid 
environments cannot be surveyed and monitored by field observations alone, remote sensing 
is a suitable and necessary method of studying standing biomass and it’s alteration in arid 
environments. However, most remote sensing based analyses have had limited success in 
regions with scarce areal vegetation cover. This thesis therefore intends to contribute to 
general remote sensing applications and solutions in arid environments. Due to the high local 
and global relevance of this research topic, woody biomass mapping using remote sensing 
techniques constitutes the central part of the presented dissertation. 

Apart from the demand on some constrained local resources, others are ubiquitously 
available. In particular solar power has much potential as an alternative energy resource in 
peripheral mountain regions. The Pamir Plateau is considered to be an ideal setting for the 
development of solar energy to alleviate energy poverty and pressure on the local ecosystem. 
However, studies on the potential of solar power systems, especially for generating thermal 
energy, have not been conducted. This thesis aims to fill this regional research gap and 
evaluate the feasibility and effects of solar power utilization as an alternative to woody 
biomass. Such an assessment has to be adapted to the respective local context. Therefore, an 
integrative approach which is straightforwardly transferable to other mountain environments, 
incorporating geographic information system (GIS) modeling, climate data, and field 
observations, should be conducted. Wind energy is not considered in this dissertation as 
preliminary climate data analysis showed, that even at favorable sites, this resource has a 
much lower potential and positive synergy effects are minimal. 
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Part I of this dissertation introduces the characteristics and regional challenges of the 
Eastern Pamirs of Tajikistan and summarizes relevant geographical research. An outline of 
state of the art research findings as well as gaps provides the starting point for forming 
research questions and hypotheses of regional as well as general relevance. Subsequently, 
materials and methods that are intended to contribute to these objectives are presented. In 
Part II, four peer-reviewed articles exemplify the central research activities of the dissertation 
in detail. Part III finally integrates the achieved results into a conclusion and gives an outlook 
of related additional research. 

1.1    Introduction and research area 

The global relevance of mountain regions and drylands is highlighted by the United 
Nations environment programme (UNEP) and the Millennium Ecosystem Assessment, 
which consider them to be key environmental systems with high vulnerability to disturbances 
(Hassan et al. 2005; UNEP 2012). Clearance of plant biomass and domestic livestock grazing 
with intensities above regeneration rates are some of the most important drivers of 
degradation in respective areas. The Eastern Pamirs of Tajikistan, entitled the ‘roof of the 
world’ by some of the first western explorers (Wood 1841), is a region where all of these 
criteria apply. With altitudes mostly between 3,500 and 5,500 meters above sea-level (m.a.s.l., 
Figure 1), a cold and arid climate showing annual mean temperatures of -1 °C, and an annual 
average precipitation of 94 mm (Murghab 1998-2012, Tajik Hydrometeorological Service 
2013), the region can be characterized as a high mountain desert. All permanent settlements 
are located in the sub-alpine belt (3,500 - 4,300 m.a.s.l.) where the climatic conditions have 
led to the dominance of scarce dwarf shrub vegetation (Krascheninnikovia ceratoides, 
Artemisia spp.) with an areal cover seldom exceeding ten percent (Walter and Breckle 1986). 
Denser, azonal meadow vegetation (e.g. Carex spp., Kobresia spp.) exists in riparian 
ecosystems because of the increased water supply (Figure 2a). In the alpine belt (4,300 – 
4,800 m.a.s.l.), with its higher rainfall rates, grasses, and cushions (e.g. Acantholimon spp.), are 
the most prevalent plants (Vanselow 2011). The already mentioned dwarf shrubs, common 
woody species in arid environments regionally known as teresken (McArthur et al. 2004; 
Heklau and von Wehrden 2011; Kraudzun et al. 2014), are of major importance to the 
research area. Animal husbandry is the basis of most people’s livelihood, and the shrubs are a 
main winter forage source due to the seasonal scarcity of other plants (Figure 2b). Another 
central ecosystem function of the perennial vegetation is the protection of soils from erosion 
(Breckle and Wucherer 2006). With the absence of trees, dwarf shrubs are the only plants 
that provide woody biomass and are the only locally available thermal energy carrier besides 
animal manure (Breu et al. 2005). Therefore, grazing and widespread harvesting of shrubs 
occurs simultaneously (Figure 2c). This situation made local energy resources, in the context 
of environmental degradation and sustainable development, a central topic of geographical 
research in the Eastern Pamirs. 
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Figure 1: Map of the Eastern Pamirs of Tajikistan. Areal extent is approximately identical to the rajon (district) 
Murghab. 

 

Figure 2: Photographs of (a) Krascheninnikovia ceratoides dwarf shrub formation in the front with azonal riparian 
grass vegetation in the background, (b) Yaks feeding on dwarf shrubs penetrating the snow, and (c) dwarf shrub 

harvesting. 

Starting with the Czarist Empire and increasingly enforced under the Soviet rule in the 
20th century, nomadism with pasture use during the summer months was replaced by 
permanent settlements, continuous utilization and a planned economy (Kreutzmann 2002). 
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The increased demand for thermal energy and the related excessive dwarf shrub extraction 
led to the ban on biomass harvesting in 1961, as the emerging degradation was recognized 
(Kraudzun et al. 2014). Provision was maintained with energy resources (e.g. coal) and 
fodder subsidies from neighboring regions. With the collapse of the Soviet Union, these 
subsidies ceased, and the recurring local resource exploitation, especially dwarf shrub 
harvesting for fuel, resulted in considerable environmental pressure (Breu et al. 2005). 
Geographical research after the civil war (1992-1997) focused on this issue, and a “severe 
energy crisis” (Droux and Hoeck 2004, p. 4), or a “teresken syndrome” (Breckle and Wucherer 
2006), were anticipated. This culminated in the assumption that respective dwarf shrubs were 
totally cleared within a radius of 80 km from the district capital Murghab (Breu 2006, p. 15). 
However, still today dwarf shrubs can be found in walking distance from this village, and 
harvesting activities were observed as close as 12 km (own observations). Accordingly, more 
recent research on dwarf shrubs suggests a rather differentiated picture, with degraded 
regions appearing alongside intact vegetation, and an increased use of other energy carriers 
such as animal manure besides dwarf shrub biomass (Kraudzun 2014; Kraudzun et al. 2014; 
Vanselow and Samimi 2014). Yet, to summarize, none of these studies give quantitative 
figures on biomass distribution or an assessment of alternatives, but all agree that an 
increased utilization of renewable energies is inevitable for sustainable development (Hoeck 
et al. 2007; Förster et al. 2011; Wiedemann et al. 2012; Kraudzun 2014; Kraudzun et al. 
2014). 

1.2    State of the art research and research gaps 

1.2.1   Regional mapping of woody vegetation 

The first remote sensing based analyses on vegetation in the Eastern Pamirs were two 
diploma theses by Budka (2003) and Hergarten (2004). Budka (2003) performed an 
ISODATA classification (ERDAS 1999) based on Landsat 7 ETM+ images with 30 m 
resolution, but only distinguishes dense green vegetation from other vegetation types and 
does not contribute information on sparsely vegetated dwarf shrub habitats. Similarly, 
Hergarten (2004) used Landsat 7 ETM+ satellite data, ancillary data, a digital elevation model 
(DEM) and a limited set of ground observations to perform a regional land cover 
classification. As a part of this analysis, an ‘expert classification’, which is a rule based 
approach (ERDAS 1999), was conducted to separate general vegetation formations. 
However, the mapping of dwarf shrub vegetation was not successful with this approach due 
to sparse vegetation cover. Therefore, additional variables were used to extract dwarf shrub 
habitats but neither a validation nor performance assessments of respective results were 
implemented. Vanselow (2011) presented a more sophisticated vegetation classification using 
a large set of ground observations, 5 m RapidEye satellite images and DEM data. In doing 
so, an ordination method was used to preselect important predictor variables for mapping 
seven vegetation formations with a random forest model (Breiman 2001). The approach 
resulted in the first validated map considering general dwarf shrub occurrence, but 
information on dwarf shrub quantities was not generated. However, Vanselow (2011) 
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showed that topographic variables from the Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) DEM, texture variables, and vegetation indices (VIs) based 
on the red-edge to infrared spectral regions were important in analyzing dwarf shrub 
vegetation. The respective approach was subsequently adjusted to increase information on 
degraded and intact dwarf shrub areas and showed that the latter still cover extensive areas 
(Kraudzun et al. 2014). Finally, Vanselow and Samimi (2014) extended the study by using a 
broader spectral region, adapted topographic predictors, additional texture variables, and a 
VI that is intended to cope with soil noise. This increased classification accuracy and an 
additional random forest regression model provided information on total vegetative cover, 
but the prediction of dwarf shrub cover was not successful. These results indicate that 
remote sensing based techniques reach their limits in the Eastern Pamirs of Tajikistan, 
particularly regarding dwarf shrub habitats. Therefore, specialized techniques may be 
necessary for biomass prediction with remote sensing data. 

Apart from remote sensing approaches, research on total biomass amounts of dwarf 
shrub communities were conducted in several studies during Soviet times which are 
described in detail by Vanselow (2011). However, the stated figures are inconsistent, ranging 
from 600 kg/ha to more than 20 t/ha according to different site conditions, and thus, an 
application of averaged values is not practicable to assess available biomass. Despite this 
absence of data on spatial availability and a large disparity of figures on local household’s 
dwarf shrub use, varying from 1.2 t (Wiedemann et al. 2012) to 7.9 t (Droux and Hoeck 
2004), an estimation of vegetation loss due to harvesting activities has been conducted, 
producing alarming figures (Droux and Hoeck 2004). As such an approach is not sufficient 
to perform a sophisticated assessment of the current situation because of the lack of 
empirical evidence; there is a need for research that combines reliable data on energy 
consumption and supply. 

1.2.2   Global remote sensing approaches on dryland vegetation 

The awareness that remote sensing and GIS are both important tools to analyze arid 
environments, but are also subject to major obstacles, is not new to the research community. 
Tueller (1987) emphasizes that in regions with a vegetation cover below 25 to 35 percent, soil 
is the dominant feature of a pixel’s spectral signal and the detection of vegetation properties 
is aggravated. Moreover, the spectral variability of the vegetation itself, which consists of 
living green as well as of senescent or woody parts to a large extent, introduces further 
difficulties in the analysis of vegetation in respective regions. Eisfelder et al. (2012), in a 
recent review on the use of remote sensing data for plant biomass derivation in semi-arid 
regions, still stress the importance of additional research to address these challenges. 
Furthermore, the transferability of methods in time and space are considered to be an 
additional, central problem. Until now, a number of different techniques and sensors have 
been applied and tested in drylands. 

Empirical models, connecting optical remote sensing indices and field measurements, are 
the most frequently used methods (Eisfelder et al. 2012). Therefore, a multitude of 
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potentially useful and complementary VIs have been developed since the 1970s (Huete 
2014). However, the utility of most common VIs is limited in drylands (Asner and 
Heidebrecht 2002; Montandon and Small 2008; Yang et al. 2012), and specific methods to 
reduce soil background and improve the sensitivity of existing VIs are suggested (Bannari et 
al. 1995). Some studies showed increased performance due to such measures (Veraverbeke et 
al. 2012), while others report no benefits for their models (Van Der Meer et al. 2001; Calvão 
and Palmeirim 2011). Another promising approach in drylands is spectral mixture analysis 
(SMA), which uses spectra of different materials, referred to as endmembers, to model 
different vegetation fractions separately (Asner and Heidebrecht 2002; Yang et al. 2012). 
Some sources conclude that the results of SMA are superior to the VI models (Yang et al. 
2012), although others acquire better results with VIs using regression models in desert 
environments compared to SMA (Buyantuyev et al. 2007). Additionally, as shown by 
Shoshany and Svoray (2002), a multi-temporal methodology based on phenological 
differences may be a solution to the problem of separately mapping different vegetation units 
such as shrubs and grasses in drylands and improving woody biomass detection. However, as 
this approach requires a specific variation in phenology of the species concerned, and can be 
inaccurate when vegetation cover is too low (Shoshany and Svoray 2002), this method is not 
universally applicable. Object based derivation of woody biomass, as shown by Spiekermann 
et al. (2015), may be a suitable alternative in semi-arid regions when the sensor resolution is 
sufficient to detect respective plants individually. In desert environments with small shrub 
vegetation, such an approach may have great potential using an unmanned aerial vehicle 
(UAV) that acquires very high resolution imagery (Laliberte and Rango 2011). Besides optical 
remote sensing approaches, radar or laser based methods are important alternatives. 
However, as this data is not available for the research area, or at least not in sufficient 
resolution, and partly involves similar limitations in regions with low vegetation cover 
(Eisfelder et al. 2012), related research is not discussed in the presented thesis. 

Regarding spectral resolution, bands from the red and near-infrared (NIR) spectral 
regions, e.g. as implemented in the normalized difference VI (NDVI), were among the first 
used for dryland biomass analysis (Tucker et al. 1985) and are still widely applied to detect 
photosynthetic vegetation fractions (Eisfelder et al. 2012). Similarly, the red-edge spectral 
domain, which forms the transition from red to infrared wavelengths, improved the 
modeling of green vegetation in arid environments in some studies (Ren et al. 2011; Li et al. 
2012; Ramoelo et al. 2012). Mid-infrared (MIR) or short-wave infrared (SWIR) spectral 
bands may contribute to biomass mapping by also capturing spectral features of senescent 
vegetation (Eisfelder et al. 2012). Different multispectral sensors which are used by the 
majority of remote sensing biomass studies in drylands (cf. Eisfelder et al. 2012) cover these 
wavelengths with a limited number of relatively broad spectral bands. Hyperspectral sensors, 
generally extending over a larger spectral domain and delivering hundreds of narrow bands, 
may improve vegetation analysis in arid environments as they are less susceptible to 
background effects and are better suited to capture spectral features of photosynthetic and 
non-photosynthetic plant tissue (Asner and Green 2001; Oldeland et al. 2010; Swatantran et 
al. 2011; Schwieder et al. 2014). However, other sources conclude that the utility of 
hyperspectral data is also very restricted in areas with low vegetation cover (Asner et al. 2000; 
Okin et al. 2001; Serrano et al. 2002).  
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In summary, research on remote sensing based vegetation and biomass analysis in arid 
environments is scarce due to the various methodological challenges. In particular in areas 
with a vegetative cover below about 30 percent, satellite based analyses have shown limited 
success (Eisfelder et al. 2012). Existing studies do not give clear recommendations on the 
suitability of specific remote sensing variables, although a large number of potentially useful 
predictors exist; yet these may not be adapted to arid regions. Furthermore, the applicability 
of different VIs may vary due to regional effects (Huete 2014) which restrict their 
transferability. Additionally, a comparison of different sensors in their ability to detect 
biomass in respective areas is missing. To address this dilemma of methodological research 
problems and the simultaneous need for biomass information in arid environments, 
enhanced research on appropriate variables, associated wavelengths, sensors, and methods is 
necessary to test the utility and the limits of optical remote sensing in the world’s drylands. 

1.2.3   Assessment of solar energy resources 

Besides a very vague estimation by Kraudzun (2014) who sees potential in solar power to 
generate basic, non-thermal energy, there is no study on solar resources in the research area. 
Globally, many mountain areas are considered to have a high natural potential for solar 
power, but are also often characterized by inadequate energy infrastructure, heavy utilization 
of local biomass, and corresponding pressure on the environment. Therefore, a number of 
solar energy research approaches in high altitudes exist which either focus on the assessment 
of available resources (Gilman et al. 2009; Poudyal et al. 2012), the analysis of the current 
utilization (Wang and Qiu 2009; Bhandari and Stadler 2011), or the environmental effects of 
installed energy systems (Limao et al. 2012). When referring to the potentials of energy 
resources in general, different definitions exist, ranging from the geographical and 
technological to the economical or implementation potential (Painuly 2001; de Vries et al. 
2007). The calculation of such potentials varies strongly as they are based on a number of 
context-based assumptions (de Vries et al. 2007), and hence no generally applicable approach 
exists. The assessment of spatial solar radiation amounts, which is the basis for deriving 
other potentials, is mostly conducted using GIS based solar radiation models that consider 
topographic effects (Tovar-Pescador et al. 2006; Pons and Ninyerola 2008; Hofierka and 
Kaňuk 2009; Kumar 2012) or satellite based analyses (Huld et al. 2012; Amillo et al. 2014), 
whereby both approaches produced reasonable results. In mountain regions, however, 
greater uncertainties are expected for remote sensing based radiation methods (Dürr and 
Zelenka 2009; Huld et al. 2012; Amillo et al. 2014) whereas GIS techniques are considered to 
be an adequate approach (Tovar-Pescador et al. 2006; Pons and Ninyerola 2008). Maps of 
the natural potential of solar radiation may be used to select suitable solar power sites (Arán 
Carrión et al. 2008), which in turn represent the geographical potential. The technical 
implementation and cost is usually calculated based on the available radiation amounts, 
required energy, and selected solar energy components with their respective technical 
specifications (Chandel et al. 2014). The evaluation of the economic feasibility is increasingly 
complex and often based on economic indicators like the levelized cost of electricity (LCOE, 
Mainali and Silveira 2013), but associated results are highly variable due to the underlying 
assumptions (Branker et al. 2011). Alternatively, some studies suggest that economic 
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considerations should not be solely decisive in the implementation of solar energy projects 
given the lack of alternative options, and social factors ought to be taken into account 
(Bhandari and Stadler 2011). Finally, the appraisal of the environmental effects of solar 
energy utilization may be based on an evaluation of existing data on ecosystem variables and 
solar energy development (Limao et al. 2012) or on a scenario- centered analysis (Shrestha et 
al. 2007). 

As outlined above, a number of studies focus on solar energy resource analysis in 
mountainous terrain; but usually existing approaches are restricted to a certain delimited 
research field. A combined assessment of the feasibility and the potential effects of 
photovoltaic power utilization in developing mountain regions, integrating different steps of 
calculating renewable energy potentials, is missing. Therefore, a simple low-cost 
methodology is required which is adjusted to the local context, considers realistic limiting 
factors, and is also easily adaptable to analyze comparable developing areas. 

1.3    Research questions and hypotheses 

Dwarf shrubs play a central role for the local people and the regional ecosystem, as does 
perennial woody vegetation for the planet’s drylands in general. Remote sensing is a tool that 
enables one to gain information on spatial vegetation properties over large areas; but a 
number of open methodological issues exist in arid environments. Therefore, the main 
research question of this thesis reads as follows: 

Is remote sensing based woody biomass quantification possible in an arid 
environment using space-borne data? 

Existing regional remote sensing approaches showed that a classification of general 
vegetation units is possible even under the challenging local settings, and that additional 
spectral and topographic variables may improve respective analyses. Global remote sensing 
studies, besides stating several difficulties, offer a wide range of variables and a number of 
methods to adapt existing predictors to conditions of scarce areal vegetation cover. This 
multitude of potentially useful predictors has not been sufficiently analyzed. Different 
spectral variables may be required to detect features of woody vegetation or correct for soil 
noise. This leads to the first general hypothesis: 

Hypothesis 1: A combination of a large set of specifically adapted satellite based 
variables together with adequate selection and modeling techniques enables spatial biomass 

prediction even under difficult arid conditions. 

Different sensors with various spatial, temporal, and spectral resolutions exist. However, 
existing research does not present conclusive recommendations on their suitability in arid 
environments. Perennial vegetation in arid environments consists of green photosynthetic, 
senescent and wooden parts that are characterized by different spectral properties detectable 
in variable wavelengths. Therefore, a broad spectral range may be advantageous in an 
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associated analysis leading to general hypothesis number two: 

Hypothesis 2: The coverage of a broad spectral range and a high spectral resolution 
increase modeling performance. Hence, hyperspectral data is especially suitable for detecting 

woody vegetation in drylands. 

Regionally, geographical research shows a contrasting picture regarding available dwarf 
shrubs in relation to their utilization as thermal energy carriers. On the one hand, results state 
a severe energy crisis with generally dwindling dwarf shrub resources; and on the other hand, 
a spatially differentiated situation is suggested by the existence of both degraded and non-
degraded areas simultaneously. However, the existing estimations are not based on 
empirically derived numbers of dwarf shrub amounts or dwarf shrub demand. This leads to 
the second research question of this thesis, which refers to the regional scale: 

What is the spatial distribution of dwarf shrub biomass amounts in relation to their 
accessibility and demand? 

Remote sensing based generation of spatially resolved biomass maps allows for an 
interdisciplinary comparison of available dwarf shrub quantities, with survey results regarding 
dwarf shrub utilization and demand shedding light on the ongoing degradation debate in the 
Eastern Pamirs. This enables the addressing of hypothesis number three: 

Hypothesis 3: Despite some rather pessimistic assessments regarding dwarf shrub 
resources in existing research, there are still regions with large stocks of dwarf shrub biomass 

to meet local thermal energy demands. 

Finally, this thesis intends to analyze possible alternatives to currently utilized energy 
carriers, as existing studies consider renewable energies a prerequisite for sustainable 
development. To that end, solar energy, as an infinite resource, is suggested to be of major 
importance in mountain regions, but its potential in the Eastern Pamirs remains unknown. 
The introduction of thermal energy as a substitute for local dwarf shrub use is a central issue 
in this context. Solar thermal techniques are not considered due to the frequent recurrence of 
freezing temperatures even in summer months. Accordingly, the third research question is: 

Is the generation of alternative thermal energy feasible with solar photovoltaic 
systems? 

The assessment of renewable energy potentials or associated definitions varies widely 
according to underlying assumptions and the research context. A number of potentially 
useful methods exist, but they have to be integrated and adapted to the respective local 
conditions. From this knowledge, the fourth hypothesis is derived: 

Hypothesis 4: An integrative approach, combining climatic measurements, GIS based 
radiation modeling, and additional survey data, enables an assessment of the feasibility and 

effects of increased solar photovoltaic energy utilization.  
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2    Materials and Methods 
In this section, data, materials and methods to test the hypotheses are briefly presented. A 

detailed description is given in the respective manuscripts (Part II). Regionally collected field 
data or ground truth data present the basis of the study. Satellite data and associated 
processing techniques are required to address objectives on remote sensing subjects, as are 
statistical methods (Hypotheses 1 and 2). Observation based scenarios are used to define 
framework conditions regarding human or economic influences (Hypotheses 3 and 4). The 
GIS based radiation model, utilized for solar resource assessment, is addressed 
(Hypothesis 4) and external data for interdisciplinary analyses is summarized (Hypotheses 3 
and 4). Finally, applied software is listed. 

2.1    Field methods and derivative data 

Ground truth data on vegetation is necessary to separate dwarf shrub habitats from other 
land cover (please refer to chapter 2.3.1) and for the derivation of spatially allocated biomass 
quantities to train and validate remote sensing based models. The basic units providing this 
information were field plots registered with a global positioning system (GPS) device. An 
associated sampling design of these plots has to meet different, partly contradictory, 
requirements. On the one hand, sampling design should correspond to statistical principles, 
whereby probability sampling is considered as ideal (Stehman and Czaplewski 1998). On the 
other hand, non-probability sampling may be better suited to ensuring ecological 
representativeness (Roleček et al. 2007). Finally, research objectives, practical considerations, 
and general limitations may make deviations from probability sampling inevitable (Stehman 
and Czaplewski 1998). Remote sensing involves a plot size that is adapted to the sensor 
resolution (Justice and Townshend 1981), and so a certain minimum extent is required. 
Furthermore, relatively homogenous vegetation is necessary (Vanselow 2011). Finally, a 
broad range of dwarf shrub coverage had to be mapped with the sampling design and the 
consideration of accessibility was central in this extensive and rugged terrain. Therefore, a 
three-step sampling design was implemented. First, dwarf shrub stands that meet the 
aforementioned criteria were preferentially selected to cover the whole research area. Within 
the stands, dwarf shrub quantities were recorded in sub-plots meeting size recommendations 
given in Mueller-Dombois and Ellenberg (1974). These sub-plots were randomly placed and 
defined the locations of the field plots. The field plots then served for the extraction of 
spectral properties for remote sensing analysis using different approaches and the allocation 
of vegetation quantities. Several methods to quantify vegetation are given in literature 
(Mueller-Dombois and Ellenberg 1974). Existing remote sensing approaches in the research 
area used estimates to derive areal vegetative cover classes (Vanselow 2011; Kraudzun et al. 
2014; Vanselow and Samimi 2014). However, such estimates may introduce additional 
uncertainties (Wilson 2011), which was confirmed by testing this approach with a small pre-
test sample (Figure 3a). For this reason, as well as to establish an empirical relationship to 
total dwarf shrub biomass, a regionally adapted measurement technique was implemented 
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which is similar to a crown diameter method (Mueller-Dombois and Ellenberg 1974). The 
shape of local dwarf shrub growth most closely resembles a circle (Figure 3b), and the 
measured plant circumference was thus used to calculate the circle area of dwarf shrubs in 
the sub-plots. However, as the major part of the dwarf shrub mass is located within the root 
zone (Figure 3c), a conversion method is necessary to derive the total biomass. 

 

Figure 3: Illustrations of (a) differences between cover estimates performed by an experienced first observer 
and cover measurements using the dwarf shrub circle area formula performed by a second observer in 4 m x 4 
m plots with superimposed 1:1 line, (b) typical dwarf shrub growth shape with red circle overlay for 
comparison, and (c) excavated dwarf shrubs for heating purposes. 

2.1.1   Allometric model 

Allometric models are empirical functions that permit the calculation of biomass from 
easily measurable morphological parameters, and are frequently used in arid environments 
(Perez-Quezada et al. 2011) and remote sensing studies (Eisfelder et al. 2012). The suitability 
of several dwarf shrub surface parameters as proxies for total biomass was examined with a 
small pre-test sample. Dwarf shrub circle area derived from the measured circumference 
proved to be the best indicator. Regression modeling of logarithmically transformed variables 
with subsequent 10-fold cross validation (Brenning 2012) and logarithm bias correction 
(Baskerville 1972) was applied using a larger sample comprising all regional dwarf shrub 
species to derive total biomass from dwarf shrub circle areas. The model served for the 
calculation of individual dwarf shrub biomass within the sub-plots. The results were 
aggregated to represent the total dwarf shrub biomass per ha for every field plot. 

2.1.2   Climate data 

Officially available climate data was not suitable for this study as solar radiation is not 
recorded. Global solar radiation measurements, at a one minute sampling and a half hourly 
logging interval, were performed using four automatic weather stations. The climate stations 
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are located in the villages Murghab (3,650 m.a.s.l.), Alichur (3,900 m.a.s.l.), Shaymak (3,900 
m.a.s.l.), and on the summit of Pik Pionerka (4,740 m.a.s.l.). This setting was intended to 
simultaneously cover the main villages and different climatological conditions, such as the 
different valley configurations, altitudes, and compass directions. Subsequent analysis and 
quality control of the data led to an available time period, from October 2012 until 
November 2013 for the Pik Pionerka station and from October 2012 until February 2015 for 
the three other stations, which was then averaged to monthly values for the analysis. 

2.2    Satellite data 

Due to budgetary reasons, this dissertation is based on freely available remote sensing 
data. Besides, the rationale of selecting adequate satellite data depends on a number of 
factors. The timing of the acquisition should fall within the period from mid-summer to the 
beginning of fall to ensure minimum snow cover and data from the peak of the vegetation 
period. As the vegetation related signal is relatively low in this arid environment in general, 
this was necessary to achieve a maximum spectral plant response in the images. Multi- 
temporal approaches such as phenological decomposition (Shoshany and Svoray 2002) were 
not considered, as the phenology of local vegetation is concurrently timed due to the cold 
and arid environment with snow, low temperatures, and short vegetation periods, according 
to our observations and information in literature (Walter and Breckle 1986; Vanselow 2011). 
Furthermore, regional plants are not characterized by an immediate response to precipitation, 
such as short term greening after rainfall. Because of the prevailing aridity, overcast 
conditions are relatively rare. Therefore, a moderate temporal resolution with a monthly 
revisit time to allow for the acquisition of images with low cloud cover is sufficient for this 
analysis. Spatial resolution is also a central issue in remote sensing based analysis (Khorram et 
al. 2012). In the research area, dwarf shrub stands frequently cover relatively large areas with 
a side length above 100 m, and so a medium resolution sensor (e.g. 30 m) would be sufficient 
for the analysis. However, dwarf shrubs also form patches within these stands and a high to 
moderate resolution sensor (around 5 m, c.f. Eisfelder et al. 2012) would be required to 
resolve respective patterns. Sensors with both moderate and moderately high resolutions 
deliver a mixed signal incorporating vegetation as well as soil spectral signals. Individual 
dwarf shrub plants can only be detected using very high resolution imagery, well below 
50 cm. At present, costly panchromatic sensors, airborne sensors, or sensors on UAVs are 
able to deliver data in this resolution. However, UAV or airborne operations are currently 
not possible in the research area because of legal restrictions. Furthermore, very high 
resolution sensors also involve significantly higher computational and processing costs when 
analyzing large areas (Matese et al. 2015). Finally, the selection of the spectral resolution is 
also critical for remote sensing- based analysis (Khorram et al. 2012). As noted earlier, a 
higher spectral resolution is hypothesized to increase performance of dwarf shrub detection 
and so a number of sensors with a broad spectral range and a large number of spectral 
divisions that meet aforementioned criteria are considered  ideal for this thesis (Figure 4). 
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Figure 4: Exemplary spectral curves of field plots with different land cover derived from the applied sensors 
(left) and schematic representations of individual bands with a superimposed color infrared image (right). 

2.2.1   RapidEye data 

The RapidEye sensor has a spatial resolution of 5 m (resampled from 6.5 m nominal 
ground resolution), a revisit time of about six days, and five spectral bands from the blue to 
the NIR regions (RapidEye AG 2011). A special feature of this sensor is that it offers a band 
covering the red-edge domain and there are indications that this band may be more effective 
in dryland vegetation studies (Eisfelder et al. 2012; Li et al. 2012; Ramoelo et al. 2012). In 
addition, with the relatively high spatial resolution, this sensor may be able to detect patch 
features of dwarf shrub vegetation using texture variables. 
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2.2.2   Landsat 8 OLI data 

 The Operational Land Imager (OLI) sensor onboard the Landsat 8 satellite has a 
multispectral resolution of 30 m, covers the whole globe in a 16-days cycle and offers eight 
spectral bands (USGS 2015). The spatial resolution of this sensor is very useful for the 
regional scale (Eisfelder et al. 2012). Besides several bands ranging from the blue to NIR 
regions, two SWIR bands may make this sensor particularly suitable for the analysis. The 
15 m panchromatic band was not used in this study. 

2.2.3   Hyperspectral EO-1 Hyperion data 

The National Aeronautics and Space Administration`s (NASA) Hyperion sensor onboard 
the Earth Observing 1 (EO-1) satellite was the first (Khorram et al. 2012) and is presently 
the only space-borne hyperspectral sensor providing data for the research area. This sensor 
has a spatial resolution of 30 m, a temporal resolution of 200 days, a very high spectral 
resolution with 242 bands ranging from 356–2577 nm, and a bandwidth of about 10 nm 
(Beck 2003). This spectral resolution may offer new possibilities in analyzing woody 
vegetation in drylands by capturing various plant features, but processing constitutes an 
additional challenge in respective research (Khorram et al. 2012). The narrow swath width, 
low temporal resolution, and limitations on collectable images per day require tasking of the 
satellite (Beck 2003). Therefore, only a small number of 7.5 km broad images are available 
for analysis with this experimental sensor. 

2.2.4   ASTER data  

The ASTER global DEM provides ground elevation data from processed stereo pairs of 
nadir and non-nadir-looking NIR cameras with a resolution of one arc second (METI and 
NASA 2009). These images served the derivation of additional topographic variables after 
resampling to a pixel size of 30 m. 

2.3    Processing of satellite data and derived 
variables 

A modeling approach that connects field data to a multitude of potentially useful spectral 
variables by simultaneously using different modeling techniques was selected to quantify 
biomass in this thesis. A SMA approach, as a potential remote sensing based alternative in 
semi-arid environments, was not considered. The main reason for this is that a complex 
spectral unmixing methodology would be required that resolves non-linear mixing issues 
whereby single plant components may not be detectable in this sparsely-covered region 
(Asner et al. 2000; Okin et al. 2001). Besides field spectra, such an approach would also be 
based on the separate mapping of photosynthetic and non-photosynthetic vegetation, which 



SYNOPSIS 

17 

is an unresolved issue and one of the largest error sources in existing research (Meyer and 
Okin 2015). In contrast, the applied method aims to utilize remote sensing- based variables 
indicative of a mixed biomass signal comprising spectral properties of soil, photosynthetic, 
and non-photosynthetic materials in a multi-variable model. Therefore, different processing 
steps are required. These include the preparation of raw remote sensing data, the limitation 
of the study region to the relevant area of interest, and the derivation of remote sensing 
variables that are subsequently integrated in the actual modeling (please refer to chapter 2.4). 

All optical satellite products are available in preprocessed formats subject to terrain 
correction as well as geometric and radiometric calibrations. Digital numbers were 
recalculated to at-sensor radiance. Atmospheric effects influence the data recorded by a 
satellite sensor, and different atmospheric correction methods exist to minimize these 
influences (Khorram et al. 2012). For this thesis, ENVI’s MODTRAN® based FLAASH® 
algorithm was utilized as a state of the art radiative transfer model (Guanter et al. 2009; 
Jiménez-Muñoz et al. 2010) by applying daily atmospheric water vapor amounts from the 
Aqua AIRS Level 3 Daily Standard Physical Retrieval product (AIRS science team and 
Texeira 2013). The algorithm results in surface reflectance values. Products delivered in tiles 
were mosaicked to spatially coherent images using a feathering algorithm. Additionally, 
RapidEye images had to be normalized using color balancing (cf. Luedeling and Buerkert 
2008) as some images contained visible illumination differences. A spatial error was still 
present in the RapidEye and Hyperion images despite preprocessing algorithms. Therefore, 
respective images were georeferenced using GPS registered ground control points and 
Landsat images. 

2.3.1   Preclassification 

To separate the area of interest (dwarf shrub habitats) from other regions (grass 
vegetation, water bodies, snow, and ice) a preclassification was performed. Existing studies 
suggest good spectral separability of dwarf shrub vegetation formations from other land 
cover types (Vanselow 2011; Vanselow and Samimi 2014). Spectral angle values (SAV, Figure 
5a), which are numerical measures of the spectral resemblance of two spectra for the rapid 
maping of spectrally similar areas (Kruse et al. 1993), were used to create raster maps for the 
subsequent implementation of the dwarf shrub biomass model. A dense dwarf shrub 
reference spectrum on the one hand and a closed azonal grass vegetation spectrum on the 
other hand were derived from Landsat data to achieve a uniform classification. From the 
reference spectra, SAV were calculated for the whole raster image and averaged for the 
vegetation plots. The ability of these variables to separate dwarf shrub habitats from grass 
vegetation was tested using the area under the ROC (AUROC) value, as it is considered a 
favorable performance measure of classifiers (Bradley 1997; Hand and Till 2001). The 
classification thresholds were determined using corresponding boxplot whisker values of 
dwarf shrub plot SAV with both reference spectra to exclude spectrally different areas 
(Figure 5b). Outlying areas were not considered for quantitative modeling. 
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Figure 5: Illustrations of (a) spectral angle between a reference spectrum and a raster pixel using a hypothetical 
two band image according to Kruse et al. (1993), and (b) boxplots of dwarf shrub SAV values with thresholds 

(grey horizontal lines) of the dwarf shrub reference spectrum (left) and riparian grass vegetation spectrum 
(right). 

2.3.2   Individual bands and band ratios 

The application of single spectral bands for vegetation modeling is the simplest form of 
using remote sensing data, but they may be important indicators of vegetation biomass in 
drylands (Mutanga and Rugege 2006). To enhance the contrast between different materials, 
simple band ratios may be calculated by dividing one band by another which was successful 
in analyzing grass biomass in semi-arid regions (Samimi and Kraus 2004). Therefore, 
individual bands and band ratios were included in the present thesis. 

2.3.3   Vegetation indices 

VIs are the most frequently applied remote sensing based variables which represent 
normalized ratios of spectral bands to reduce noise (Huete 2014). These indices are used by 
the majority of dryland remote sensing studies and a number of these reported high 
correlations with plant biomass (Eisfelder et al. 2012). Respective indices are usually 
calculated as: 

𝑉𝑉𝑉, 𝑏 =
𝑅𝑅 − 𝑅𝑅
𝑅𝑅 + 𝑅𝑅

       (1) 

Where R is reflectance; a is the first wavelength and b is the second wavelength. 
Respective indices using all available spectral bands and other versions suggested in literature 
(Gelder et al. 2009; Ramoelo et al. 2012) were derived for this study. 
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2.3.4   Soil adjusted vegetation indices 

Simple VIs are subject to a number of disturbances, especially in regions with low 
vegetation cover, and additional indices have been developed to account for variations in soil 
brightness (Bannari et al. 1995). Generally, various forms of respective indices exist: Indices 
that are based on fixed, empirically derived constant coefficients to adjust for background 
influences such as the soil adjusted VI (SAVI, Huete 1988), indices using self-adjustable 
correction factors (Qi et al. 1994), and indices that are based on the calculation of soil line 
parameters by applying regional soil plots (Figure 6, Bannari et al. 1995). Spectral variables 
based on these principles are considered to improve dryland vegetation analysis in the study 
area (Kraudzun et al. 2014; Vanselow and Samimi 2014) and other regions (Bannari et al. 
1995; Veraverbeke et al. 2012). In this thesis, various forms of respective indices are used 
and referred to as soil adjusted VIs. 

 

Figure 6: Scatterplot of nine bare soil sites (black) and nine dwarf shrub sites (red) in the Landsat red-NIR 
spectral domain. The Black regression line is used for the derivation of soil line parameters. Presented 
vegetation plots most closely resemble the theoretical concept of the perpendicular vegetation index 

(cf. Jackson et al. 1980)  

2.3.5   Color adjusted vegetation indices 

Besides influences of soil brightness, VIs are also subject to soil color variations. To 
account for such dissimilarities, specific indices were developed by correlating an additional 
correction index (CI, e.g. a redness index using red and green bands, Escadafal and Huete 
1991) to existing common VIs such as the NDVI, and correcting for soil color using 
following formula: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑉𝑉 − (𝑘 ∗ 𝐶𝐶)       (2) 
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,where k is the slope of the linear correlation between VI and CI. This is considered to 
increase the sensitivity of VIs in arid regions (Escadafal and Huete 1991; Bannari et al. 1995). 
As such indices may be especially suitable for the research area with its highly variable soil 
colors; this approach was adopted for aforementioned variables and extended with additional 
CIs to derive a number of color adjusted VIs. 

2.3.6   First derivatives of reflectance and ratios 

First derivatives of reflectance (FDR) are indices that are based on the changes of the 
slope along the spectrum (Elvidge and Chen 1995). They may be less susceptible to soil and 
illumination noise (Wang et al. 2011). Therefore, FDR indices and FDR ratios were 
calculated for this study. 

2.3.7   Principal components and ratios 

Principal components (PCs) are low dimensional representations of data containing as 
much variation as possible (James et al. 2013). PCs are reported to correlate with vegetation 
in dryland regions (Mutanga and Rugege 2006). In this thesis, PCs and respective PC ratios 
were derived as they may be related to dwarf shrub features or correct for background 
influences. 

2.3.8   Texture variables 

Texture measures are characterizations of spatial grey-level distributions, edge 
quantifications of image segments, or are based on gray level co-occurrence values between a 
pixel and its neighbors (Irons and Petersen 1981). This variables showed to improve biomass 
detection in general (Fuchs et al. 2009; Sarker and Nichol 2011) as well as vegetation analysis 
in the research area (Kraudzun et al. 2014; Vanselow and Samimi 2014). As dwarf shrubs 
sometimes grow in patches with a side length of several meters, texture attributes using high-
resolution data could add valuable information to model dwarf shrub biomass. Therefore, 
texture measures were calculated by applying grey-level co-occurrence and range filters based 
on RapidEye data. 

2.3.9   Spectral angle based variables 

SAV and ratios of SAV were included in this thesis as a substitute for real endmembers 
used in SMA approaches that performed well in other semi-arid regions (Yang et al. 2012). 
As pure image based endmembers cannot be mapped due to the scarce vegetation cover of 
the study area, this approach is intended to exploit some advantages of the method by 
integrating SAV of soil, dwarf shrub, and grass vegetation plots. These variables are 
considered as pseudo endmembers in this study. 
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2.3.10   Topographic variables 

Since topography influences solar radiation, evapotranspiration, and temperature, it may 
be an important factor regarding biomass quantities in arid environments (Sternberg and 
Shoshany 2001). Correspondingly, topographic variables are considered to be major 
components in modeling regional vegetation (Vanselow 2011; Kraudzun et al. 2014; 
Vanselow and Samimi 2014). To include this information in our study, we derived elevation, 
the cosine of slope aspect, the sine of slope aspect, and slope as topographic predictors from 
the ASTER DEM. 

2.4    Statistical methods 

Preliminary plots and existing literature on semi-arid shrublands suggest that biomass 
shows an approximately linear relationship to spectral variables (Holm et al. 2003; Calvão 
and Palmeirim 2004). Therefore, this thesis mainly focuses on linear methods of biomass 
modeling. The high number of available spectral predictors caused by the multitude of 
proposed variables in literature, and the tremendous number of bands provided by 
hyperspectral sensors, introduce some challenges to respective modeling. Generally, time and 
cost constraints limit the total number of samples. This may result in a data set that contains 
more potential predictor variables than observations, which is a frequent research problem 
referred to as high dimensional (James et al. 2013). The situation leads to model overfitting 
with some traditional approaches, and a number of alternative methods for efficient variable 
selection or weighting were designed (Brenning 2009; James et al. 2013). 

2.4.1   Linear regression 

The comparatively straightforward linear regression model is a widely used method and 
the basis of many newer, sophisticated modeling techniques (James et al. 2013).  In this 
thesis, stepwise forward variable selection is applied as this procedure is computationally 
efficient and can be used in a high- dimensional setting (James et al. 2013). The method starts 
with a no- predictor model (null model) and adds predictors stepwise as long as an 
improvement criterion is increased. The linear regression model was used in various 
implementations in this thesis: Simple linear regression restricted to one predictor was 
applied using the Pearson correlation coefficient as the selection criterion. Further, linear 
multiple regression models, one version restricted to a maximum of four predictors to assess 
the utility of sparse models and one version without predictor limitations, were applied. In 
these implementations, Akaike Information Criterion (AIC) was used as a selection criterion 
which adjusts for model size and is well-founded in statistical theory (James et al. 2013). 
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2.4.2   Partial Least Squares linear regression 

Partial least square (PLS) linear regression is a supervised dimension reduction method. 
By means of it, all available original predictor variables are transformed to linear 
combinations that are related to the response variable (biomass) and so fewer feature sets for 
modeling are generated (James et al. 2013). Residual data is used to create new feature sets in 
each step. An internal cross validation procedure of the root mean square error (RMSE) is 
applied to choose the ideal number of steps (Mevik et al. 2015). Some remote sensing studies 
recommend PLS as a tool that enables high dimensional data handling (Peerbhay et al. 2013). 

2.4.3   Ridge regression 

As with least squares regression, ridge regression (RR) aims to generate coefficients 
leading to a small residual sum of squares; but it introduces a factor that shrinks less 
important coefficients towards zero using a tuning parameter λ (James et al. 2013). The 
determination of an ideal value for λ is critical with this approach and is determined using 
cross validation. Although RR penalizes the coefficients and certain variables are not very 
influential in the final model, the technique uses all predictors for modeling. Lazaridis et al. 
(2011) report good performance of RR in their study with a large number of remote sensing 
based predictors. 

2.4.4   Lasso regression 

The lasso regression is very similar to RR, but instead of shrinking the coefficients 
towards zero, lasso actually shrinks very small coefficients down to zero (James et al. 2013). 
In that way, not all predictors are used in the final model and lasso performs feature 
selection, thus leading to simpler models. A priori, it is usually unclear whether RR or lasso is 
more suitable for an analysis as this depends on the relationship of the number of predictors 
to the response (James et al. 2013). However, some remote sensing studies showed good 
performance of the lasso regression in quantifying vegetation (Gaughan et al. 2013; 
Takayama et al. 2013). 

2.4.5   Random forest regression 

Random forest regression (RF) is a non-linear, non-parametric tree based method that is 
considered an appropriate approach when handling high dimensional data (Pal 2005). In this 
thesis, it is used to test the advantages of non-linear models for the prediction. The technique 
uses a number of trees, where each tree is based on a randomly selected subset of predictors 
which is suggested as robust to overfitting (Breiman 2001). Selection of split variables is 
based on the greatest reduction of the residual sum of squares, and the number of predictors 
used for the subsets usually corresponds to the square root of total predictors (James et al. 
2013). The RF model is considered a valuable approach for remote sensing based analysis in 
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the research area (Vanselow and Samimi 2014) and biomass mapping in other regions 
(Powell et al. 2010). 

2.4.6   Cross validation 

Knowledge regarding the test error, which is a performance measure for a method applied 
on new data not included in model building, is necessary for the evaluation of a statistical 
approach (James et al. 2013). The easiest method of calculating such a test error is using an 
additional test dataset not included in training the model. However, such a large test data set 
is often unavailable. Another approach is splitting the data randomly into two parts, training 
the model on the one sample, and using the resulting model to predict values for the 
excluded set. Error measures from this validation set allow for an estimate of the test error 
(James et al. 2013). However, the derived test error may be highly variable depending on 
included or excluded samples, and fewer training observations may reduce model 
performance. These effects are reduced when using leave-one-out cross validation or k-fold 
cross validation. The latter has a lower computational cost and is considered to give more 
accurate estimates of the test error (James et al. 2013). In this thesis, 10-fold cross validation 
is performed where the data is partitioned into ten subsets, and each subset is excluded for 
testing the model and the nine remaining samples are used for model fitting. The procedure 
is repeated until every subset has been used as a test set once. To generate results that are 
independent of a particular segmentation, the whole process is repeated 100 times (James et 
al. 2013). As spatial autocorrelation may be present in geospatial data, k-means clustering of 
coordinates was applied as outlined in Brenning (2012). 

2.4.7   Variable importance 

The importance of the predictors was determined using a permutation based approach in 
which every predictor is randomly altered and the associated change of prediction accuracy is 
used as a measure of the importance of the variable (Strobl et al. 2007). Several studies 
applied this technique for importance assessment in a spatial context (Ruß and Brenning 
2010; Brenning et al. 2012). 

2.4.8   Multiple test procedures 

Hypothesis testing in correlation analysis introduces a multiple testing problem when a 
large number of variables are investigated. When 100 independent hypothesis tests at the 5 % 
significance level are conducted, five false rejections are anticipated if all the null hypotheses 
of zero correlation are true. With 10,000 tests, this number should increase to 500 false 
rejections. With more than 12,000 hyperspectral indices available, this problem has to be 
taken into account. Therefore, the Benjamini-Hochberg procedure (Benjamini and Hochberg 
1995) was applied. The suitability of this method was suggested by Peña et al. (2012) when 
analyzing hyperspectral data. 
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2.5    Observation based scenarios and cost 
assessment 

Evaluating aspects that depend on human behavior under specific circumstances are often 
complex and highly variable. Therefore, assumptions on certain framework conditions are 
required. Scenarios provide tools for scientific assessment and describe plausible situations or 
developments. Scenarios are not forecasts and inevitably require subjective factors 
(Nakićenović and Intergovernmental Panel on Climate Change 2000). Studies on sustainable 
development, energy resources, or the evolution of ecosystem services frequently use 
scenario based analyses (Hassan et al. 2005; Lund 2007; Shrestha et al. 2007; UNEP 2012). In 
this thesis, descriptive scenarios are applied to determine harvesting behavior, potential 
electric energy use, energy requirements, and economic framework conditions. The scenarios 
are derived using field based qualitative information such as participatory observations of 
local harvesting activities. Additionally, data from the literature (e.g. Kraudzun 2014) and 
project partners is deployed. Cost assessment for energetic infrastructure is implemented 
using current market prices and the adaption of literature-derived formula (Chandel et al. 
2014). 

2.6    GIS based solar radiation model 

Several GIS based solar radiation models exist with different advantages and limitations 
(Erdélyi et al. 2014). The DEM based ArcGIS solar analyst was selected for this study as 
existing research showed reasonable performance of this algorithm in complex terrain 
(Tovar-Pescador et al. 2006), it is a relatively simple approach, and the software is widely 
available and frequently used (ESRI 2015). The solar analyst calculates a hemispheric 
viewshed for every point on the raster and overlays this viewsheds with sunmaps 
representing direct solar radiation and skymaps that provide diffuse solar radiation amounts 
(Fu and Rich 1999). The integration of the sun position allows for the calculation of every 
time period. The main parameters controlling the model are topographic effects and 
atmospheric parameters. The latter are represented by transmittivity, which is an indicator of 
the permeability of solar radiation through the atmosphere, and the diffuse proportion as a 
measure of the quantity of global radiation that reaches the surface after scattering (Fu and 
Rich 1999). A calibration station served the derivation of ideal corresponding parameters in 
this thesis. 

2.7    External data for interdisciplinary analysis 

To integratively analyze dwarf shrub quantities against the background of accessibility and 
demand, additional data is necessary. Respective data was generated by an extensive survey 
on energy consumption implemented by Hohberg and Kreczi (2013). An empirical field 
based model of accessibility was provided by Hohberg (submitted). 
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2.8    Software 

This thesis considers a broad range of geospatial analysis software as every product 
provides specific tools and offers certain advantages (and disadvantages). Applied software 
includes ArcGIS, ENVI, QGIS, SAGA GIS and TNTmips. Statistical analysis and spatial 
modeling was performed using R. 
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Remote sensing based biomass estimation in arid environments is essential for monitoring degradation and carbon
dynamics.However, due to the lowvegetation cover in these regions, satellite-based research is challenging. Numer-
ous potentially useful remotely-sensed predictor variables have been proposed, and several statistical andmachine-
learning techniques are available for empirical spatialmodeling, but their predictive performance is yet unknown in
this context. We therefore modeled total biomass in the Eastern Pamirs of Tajikistan, a region with extremely low
vegetation cover, with a large set of satellite based predictors derived from two commonly used sensors (Landsat
OLI, RapidEye), and assessed their utility in this environment using several suitablemodeling approaches (stepwise,
lasso, partial least squares and ridge regression, randomforest). Thebest performingmodel (lasso regression) result-
ed in a RMSE of 992 kg ha−1 in spatial cross-validation, indicating that biomass quantification in this arid setting is
feasible but subject to large uncertainties. Furthermore, pronounced over-fitting in some commonly used models
(e.g. stepwise regression, random forest) underlined the importance of adequate variable selection and shrinkage
techniques in spatial modeling of high dimensional data. The applied sensors showed very similar performance
and a combination of both only slightly improved results of better performingmodels. A permutation-based assess-
ment of variable importance showed that some of the most frequently used vegetation indices are not suitable for
dwarf shrub biomass prediction in this environment. We suggest that predictor variables based on several
bands accounting for vegetation as well as background information are required in this arid setting.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Drylands cover extensive parts of the planet with about one fifth of
the land surface classified as arid or drier (Lal, 2004; UNEP, 2012).
Although biomass per unit area is normally low in those regions, the
vast extent of the earth’s arid lands gives them a significant role as a
carbon pool and for the supply of essential ecosystem services
(Perez-Quezada, Delpiano, Snyder, Johnson, & Franck, 2011; Trumper,
Ravilious, & Dickson, 2008; Safriel & Adeel, 2005). Woody perennial
vegetation has a most prominent position in drylands as it stabilizes the
soil, is a year round forage source, and can be used as firewood. However,
over-exploitation may lead to degradation with a loss of productivity,
stored carbon, and ecosystem resilience (Eisfelder, Kuenzer, & Dech,
2012; Breckle & Wucherer, 2006; Lal, 2004). Even though desertification
occurs on a local scale, it can be considered as a major global problem
because of the large area affected (FAO, 2004; UNEP, 2012). Therefore,
comprehensive research of desertification requires remote sensing as a
andler).
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tool for mapping biomass in arid environments (Eisfelder et al., 2012;
Trumper et al., 2008; Yang, Weisberg, & Bristow, 2012).

In spite of these needs, remote sensing studies of vegetation in arid
regions are scarce, and additional methodological research is needed
to address the specific challenges faced by remote sensing techniques
in these environments (Eisfelder et al., 2012). In particular, sparse and
senescent vegetation may lead to a weak or ambiguous spectral re-
sponse that is strongly influenced by soil background (Eisfelder et al.,
2012). This also limits the utility of common vegetation indices (Asner
& Heidebrecht, 2002; Montandon & Small, 2008; Yang et al., 2012).
Therefore, remotely-sensed vegetation analysis in areas with plant
cover under 30% has had limited success or was considered impossible
(Escadafal & Chehbouni, 2008; Okin, Roberts, Murray, & Okin, 2001).

To address this methodological issue and provide biomass informa-
tion in arid environments, different techniques and sensors have been
applied and tested. However, existing research does not provide clear
recommendations on the suitability of specific sensors for arid environ-
ments, although some studies indicate that sensors in the spectral region
of the red edge such as RapidEyemay bemore effective than convention-
al sensors such as Landsat OLI (Eisfelder et al., 2012; Li, Gao, Bai, & Huang,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2014.11.007&domain=pdf
http://dx.doi.org/10.1016/j.rse.2014.11.007
mailto:harald.zandler@uni-bayreuth.de
http://dx.doi.org/10.1016/j.rse.2014.11.007
http://www.sciencedirect.com/science/journal/00344257
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2012; Ren, Zhou, & Zhang, 2011). It is therefore our goal to assess the suit-
ability of existing spectral indices derived from two different sensors,
Landsat OLI and RapidEye inmapping biomass in a dryland environment.

An additional challenge in this context and in environmental remote
sensing as a whole lies in the use of large numbers of potentially useful
predictor variables to model and map a biophysical variable that is ob-
served at a limited number of reference sites.While numerous explorato-
ry as well as predictive tools from computational statistics and machine
learning have been introduced into remote sensing in recent years, best
results are achieved using varying techniques adapted to the given
context (e.g., Brenning, Long, & Fieguth, 2012; Xu, Li, & Brenning, 2014).

The main intention of this study is to map dwarf shrub total biomass
(TB) in an environment with extremely low vegetation cover (dwarf
shrubs b20%) using a large number of predictor variables consisting of
individual bands, indices, topographic attributes and texture variables
derived from mutli-spectral Landsat OLI, RapidEye and ASTER GDEM
satellite data. Embedded in this primary objective are two key challenges:
(1) to apply and evaluate different empirical models to derive dwarf
shrub biomass (stepwise, lasso, partial least squares and ridge regression
as well as random forest); (2) and to compare two different commonly
used relatively new sensors (Landsat OLI and RapidEye) for their
suitability for vegetation detection in extremely arid environments.

2. Study area

Researchwas carried out in a highmountain desert landscape located
in the Eastern Pamirs of Tajikistan (Fig. 1). The plateau-like region with
elevations between 3500 and 5500 m above sea level is characterized
by broad valleys with moderate slopes. A harsh climate with cold
Fig. 1.Map of the study area. Research is restricte
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temperatures (Murghab annual mean 1998–2012: −1 °C, Tajik Met
Service, 2013) and low precipitation (Murghab annual mean 1998–
2012: 94 mm, Tajik Met Service, 2013) only allows scarce vegetation
with the exception of azonal vegetation with increased water supply
from orographically induced higher rainfall rates at high altitudes,
surface water or groundwater (Fig. 2a & b). The majority of the
non-riparian vegetation is dominated by dwarf shrubs, locally re-
ferred to as “Teresken” (Kraudzun, Vanselow, & Samimi, 2014;
Vanselow, 2011). The regional dwarf shrubs are widespread woody
species typical for steppe or semi-desert/desert habitats (Heklau &
Röser, 2008; Heklau & vonWehrden, 2011;McArthur & Stevens, 2004).

Animal husbandry is the main economic activity and provides a
livelihood for the local population. Dwarf shrubs, as the only woody
plants, therefore play an important role as both forage and fuel source.
For the latter purpose, the entire plant is dug up as the majority of the
plantmass is located underground in the root zone (Fig. 2c). The current
use has led to concerns regarding overexploitation, degradation and
desertification (Breckle & Wucherer, 2006). Although much work on
dwarf shrubs was done from the 1950s until the 1980s as reviewed by
Walter and Breckle (1986), and generalized classifications on the
occurrence of dwarf shrubs have been carried out (Kraudzun et al.,
2014; Vanselow, 2011, Vanselow & Samimi, 2014), the actual occur-
rence and density of dwarf shrub biomass distribution remains a large
research gap. The most recent remote sensing approach to quantify
dwarf shrub cover by Vanselow and Samimi (2014) was abandoned
due to unsatisfactory results. Besides aforementioned work, only two
unpublished diploma theses exist that use satellite data and those led
to very limited information regarding vegetation cover (Vanselow,
2011).
d to the region covered by RapidEye images.



Fig. 2. Photographs of (a) a Krascheninnikovia ceratoides dwarf shrub site, (b) a
Krascheninnikovia ceratoides and Artemisia spec. formationwith azonal riparian vegetation
in the background, and (c) extracted young dwarf shrub individual.
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3. Methods

To date there is no mapping methodology to predict TB in the
research area. Therefore, the methodology (Fig. 3) incorporates three
separate parts: 1) the development of an allometric model to derive
field biomass, 2) the processing of satellite images and 3) the combina-
tion of both data sources in the spatial prediction of dwarf shrub biomass.
3.1. Allometric functions

To infer TB from surface parameters, allometric functions were used
(Eisfelder et al., 2012). These functions permit derivation of biomass
from simple, non-destructive measurements of morphological parame-
ters (Perez-Quezada et al., 2011). The desired allometric model involves
all regional dwarf shrub species comprisingKrascheninnikovia ceratoides
and Artemisia spec. (Kraudzun et al., 2014).

In a first step, several variables (e.g. dwarf shrub maximum
transverse/minimum conjugate diameters, stem diameter, maximum
dwarf shrub circumference in cm) were measured for a small pre-test
sample preferentially derived from a small area in the central research
area (n = 34) for exploratory analysis of applicable measures. These
variables were used to calculate dwarf shrub areas assuming elliptical
or circular plant shapes to derive suitable morphological indicators for
TB in an initial analysis.

In a second step, complete dwarf shrub individuals were extracted
from the soil and weighed immediately after harvesting (1 g precision).
As this study analyzes undried biomass, dry biomass can be expected to
decrease, although moisture content is expected to be low in this arid
setting and a major part of dwarf shrub biomass is composed of dry
dead plant material as the inner old parts die off over time, while growth
continues on the outer parts (Walter & Breckle, 1986). Regression analy-
sis showed that dwarf shrub circle area calculated from circumference
(CAds) is the best proxy for dwarf shrub TB which is in agreement with
the observation that circular shape is the most common growth habit of
35
undisturbed dwarf shrubs in the research area. Hence, further field
surveys only considered this variable to reduce survey efforts.

Harvesting locations were placed according to a design that covers
the whole research area stratified by geographical distribution and ac-
cessibility. At the sites, all dwarf shrubs were excavated in 3 predefined
areas with a 10 m × 10 m side length. Dwarf shrub numbers in those
areas ranged from 44 to 111 individuals.

In a third phase, linear regression was conducted with CAds as predic-
tor and undried dwarf shrub TB as the response variable (n = 243; 132
Krascheninnikovia ceratoides, 111 Artemisia spec.). Both response and
predictor variables were transformed using natural logarithm in order
to accommodate the shape of the empirical relationship, non-negativity
of the response and model requirements. As logarithmic transforma-
tion introduces a bias in the back transformation calculation, the
predicted values were multiplied with an empirical correction factor
CF (Baskerville, 1972):

CF ¼ e
MSE
2ð Þ ð1Þ

MSE mean square error of regression

The final allometric model was then used to calculate TB for every
dwarf shrub individual. The model’s prediction error was estimated
using 10-fold cross-validation, which reduces bias in performancemea-
sures (Brenning, 2012). For the evaluation, absolute and relative root
mean square error (RMSE, RMSErel) and BIAS of the back transformed
variables were calculated:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
n¼1

Yi− bYi� �2

n

vuuut
ð2Þ

RMSErel ¼ RMSE
Y

� 100% ð3Þ

BIAS ¼ 1
n

Xn
n¼1

bYi− Yi
� �

ð4Þ

where n is the number of observations, Y is the observedmean value, Yi
is the measured value and bYi the predicted value of case i. The same
equations were applied to the assessment of empirical remote sensing
models (Section 3.6).

3.2. Field data

Overall, 137 field plots with homogenous vegetation cover were
mapped with a GPS device in summer 2013 to serve as field sites for
pre-classification and empirical model development. Of these, 122
field sites are dwarf shrub areas. Besides dwarf shrub habitats, 15
riparian green and dense grass vegetation sites (meadow vegetation)
were mapped for the pre-classification. Plot size was calculated (Eq. 5)
according to Justice and Townshend (1981), applying the resolution of
the coarsest used sensor,

S ¼ P 1þ 2Lð Þ: ð5Þ

where S is the side length of the field plot, P is the pixel size in meters
and L is the geometric accuracy of the sensor in pixels. The Landsat
OLI sensor has a pixel size of 30 m and an accuracy of 12 m (0.4 pixels;
USGS, 2013) resulting in a calculatedminimum size of 54m. To provide
for GPS deviations of usually around 5 m (horizontal RMSE), the mini-
mum plot size was increased to 60 m side length. Additionally, a 10 m
buffer distance was maintained to environmentally different areas to
minimize side effects. Preferential sampling was the favored method



Fig. 3.Methodological workflow.
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for the selection of dwarf shrub stands in this study, whereby ecologically
and spectrally homogeneous sections covering the whole research area
should be defined. Such a sampling design is connected to methodologi-
cal concerns as it violates some assumptions of statistical analysis. On the
other hand, preferential sampling may be superior from an ecological
point of view in reaching ecological representativeness, so consequently
no particular sampling strategy is entirely suitable (Roleček, Chytrỳ,
Hájek, Lvončík, & Tichỳ, 2007). Furthermore, given the environmental
conditions and plot requirements (e.g. minimum size, homogeneity),
preferential sampling in the research area is farmore feasible due to inac-
cessibility, extensive bare rock and desert areas without plants and the
aim to cover the whole range of biomass densities. In order to consider
statistical standards, dwarf shrub density and biomass were determined
on the subplot level, which were established inside dwarf shrub stands
using an adapted random walk technique (Rudnick & Gaspari, 2004).
36
Two 4 m × 4 m subplots according to size recommendations for woody
vegetation (Mueller-Dombois & Ellenberg, 1974) were recorded at each
field site. TB was derived in a two-step approach using CAds by measure-
ment of all circumferences in the subplot. Biomasswas then derived from
areal cover of the plants by using the developed allometric function
described in Section 3.1., summed and averaged to mean TB kg ha−1

for each field site.
Regarding site homogeneity, subsequent analysis of variance of areal

dwarf shrub cover showed a standard deviation of 1.56 percentage
points within the field sites which allows an approximate precision of
1.1 percentage points with the aforementioned study design. These
figures were considered sufficiently homogeneous for satellite based
vegetation analysis, although small scale heterogeneity and uncer-
tainties originating from sampling design have to be considered when
evaluating modeling results.
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3.3. Satellite image acquisition and preprocessing

The study utilizes both Landsat 8 OLI and RapidEye satellite images.
Landsat provides a consistent series of remotely sensed data over a long
time period with global coverage (USGS, 2013), and RapidEye offers a
red edge band which may be particularly suitable for vegetation
detection in arid environments (Li et al., 2012). To include topographic
information, ASTER Global Digital ElevationModel V002 (ASTER GDEM,
METI & NASA, 2009) was resampled to 30m× 30m resolution. Landsat
L1T images (paths 150–151, rows 33–34)with 12m circular error (with
90% confidence) were acquired with minimal cloud and snow cover
(scenes from 19 and 28 July 2013). The L1T product is radiometrically
and geometrically calibrated, terrain-corrected and has a resolution of
30 m × 30 m for the non-panchromatic OLI bands (USGS, 2013). Level
3A ortho products have a resampled resolution of 5 m × 5 m (ground
sampling distance 6.5 m) and a geometric accuracy below 30.34 m
(circular error at the 90% confidence level; RapidEye AG, 2009). 47
RapidEye tiles were acquired from 31 July to 24 September 2013. The
timing of image acquisition coincided with the peak of the vegetation
period of shrubs when highest spectral plant signals may be expected
(Walter & Breckle, 1986).

All scenes were converted to at-sensor radiance. For atmospheric
correction, the MODTRAN® based FLAASH® approach provided by
ENVI softwarewas applied as it is considered a state-of-the-art radiative
transfer model (Guanter, Richter, & Kaufmann, 2009; Jiménez-Muñoz,
Sobrino, Mattar, & Franch, 2010), while alternative approaches like the
6S algorithm have been reported to perform poorly in arid environ-
ments (Maiersperger et al., 2013). The appropriate atmospheric model
for each scene was chosen according to water vapor amounts given by
the Aqua AIRS Level 3 Daily Standard Physical Retrieval product (AIRS
Science Team & Texeira, 2013).

Prior to the analysis, all images were scrutinized for accurate
geo-referencing using field-based GPS reference points (e.g., road
intersections, bridges, rock formations). Further correction of Landsat
images was not necessary. RapidEye images showed various deviations
from GPS points. Therefore all tiles (n = 47) were adjusted, mosaicked
and finally georeferenced to GPS measurements using 9 control points
covering the whole research area (RMSEXY = 5.42 m). Mosaicking of
all satellite images was performed using a feathering algorithm. During
mosaicking of RapidEye images, color balancing using statistics of
cloud-free overlapping areas was necessary for some images, as they
still showed sensible differences due to atmospheric and illumination
effects. Color balancing is a function of the ENVI software to adjust for
small differences in the image’s light intensity using gain and offset
values (Luedeling & Buerkert, 2008).

3.4. Pre-classification

A pre-classification to separate potential dwarf shrub areas from
different land cover (meadow vegetation, water bodies, snow and
glaciers) was performed to limit the study to the relevant area of
interest. The pre-classification was based on an allocation of image
pixels according to spectral similarity to dense dwarf shrub areas and
spectral difference to meadow vegetation areas. Spectral information
is known to be a good tool to distinguish these classes in this study
region (Vanselow, 2011). The discrimination is performed using spec-
tral angle values (SAV) which express spectral similarities to reference
spectra and show little influence by illumination differences (Kruse
et al., 1993). Reference spectra were extracted from field sites with
the densest dwarf shrub formation on the one hand, and sites with
closed meadow vegetation on the other. SAV were then calculated for
the entire images and averaged for both types of reference sites.

Considerable differences in SAV between dwarf shrub and meadow
vegetation were visible. Areas under the ROC (AUROC) values for
group discrimination ranged between 0.96 (dwarf shrub reference
spectrum) and 0.93 (meadow vegetation reference spectrum). The
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pre-classification thresholds were determined using boxplots of both
measures. This was done by assuming that, on the one hand, all SAVs
above the upper whisker (i.e., median plus 1.5 times the interquartile
range) of the dwarf shrub reference boxplot correspond to non-dwarf
shrub areas and on the other hand, SAVs below the lower whisker of
the meadow vegetation reference boxplot are green, grass vegetation
areas. Thus, only spectrally coherent dwarf shrub regions were used as
our area of interest, while other land cover types were disregarded.
This also led to the elimination of eleven outlying dwarf shrub field
sites from further analysis. The pre-classification was performed using
Landsat bands only. After pre-classification, 111 field sites were left for
further analysis.

3.5. Remote sensing variables and vegetation indices

To better exploit the available spectral information, derived spectral
features were included in the analysis (selected important variables
summarized in Tables 1 and 2). Themajority of studies apply vegetation
indices for remote sensing-based biomass estimation and so a variety of
indices exist (Eisfelder et al., 2012). These and all other applied variables
are grouped in following categories:

3.5.1. Unadjusted vegetation indices
These comprise simple band reflectance, band ratios and common

vegetation indices from literature that are used frequently in remote
sensing studies (Bannari, Morin, Bonn, & Huete, 1995; Eitel, Long,
Gessler, Hunt, & Brown, 2009; Haboudane, Miller, Pattey, Zarco-Tejada,
& Strachan, 2004; Homer, Aldridge, Meyer, & Schell, 2012; Ramoelo
et al., 2012; Rouse, Haas, Schell, Deering, & Harlan, 1974).

3.5.2. Soil adjusted vegetation indices
As vegetation indices suffer fromvarious soil effects, especiallywhen

vegetation cover is low (Bannari et al., 1995), additional soil adjusted
vegetation indiceswere derived to account for soil brightness variations
(e.g. SAVI, TSAVI, MSAVI). These indices are either based on empirically
derived, fixed adjustment coefficients or by construction of a soil line
using red and infrared spectral bands (Qi, Chehbouni, Huete, Kerr, &
Sorooshian, 1994).

3.5.3. Color adjusted vegetation indices
Vegetation indices do not only differ due to vegetation and brightness

variations, but also because of soil color differences when cover is low
(Bannari et al., 1995). Therefore, additional indices were developed to
adjust for the noise arising from soil color. The method correlates an
additional index that represents soil color to existing indices (e.g. NDVI,
SAVI) and may thereby double the sensitivity of the vegetation index
under arid conditions (Bannari et al., 1995, Escadafal & Huete, 1991). As
we expect these indices to be particularly suitable for the research area
with its extremely low cover and large variety of soil colors, this
technique was applied to a number of variables mentioned above with
different color adjustment indices.

3.5.4. First derivatives of reflectance (FDR) and ratios
FDR were calculated as they may be able to reduce scatter due to

illumination or soil compared to simple reflectance based indices
(Wang, Qu, Hao, & Hunt, 2011). To consider different spectral regions
that may be able to capture vegetation properties, FDR ratios were
calculated as well.

3.5.5. Principal components (PC) and ratios
Tomaximize the variance of the satellite data and identify combina-

tions of features that discriminate dwarf shrub from other land cover,
principal components (PCs) were derived. Furthermore, as certain PC
may be related to background and others to dwarf shrub features,
additional PC ratios were calculated applying the same method used
for simple band ratio calculations to enhance possible differences.



Table 1
Overview of the most important indices, principal components, FDR and respective ratios used in this study. Variables are only an excerpt. Additional predictors are listed the Appendix
(Table A1) and are based on the following studies: Bannari et al. (1995), Elvidge and Chen (1995), Gelder, Kaleita, and Cruse (2009), Homer et al. (2012), Ren et al. (2012), Rondeaux,
Steven, and Baret (1996). (S = sensor; Bblue2 = LS Band2/RE Band1; Bgreen = LS Band3/RE Band2; Bred = LS Band4/RE Band3; Brededge = RE Band4; Bnir = LS & RE Band5; a = slope
of the soil line; b = intercept of the soil line; k = slope of linear correlation between index and color adjustment index; nine bare soil field sites were used for construction of soil related
parameters).

Variable S Formula Reference

Unadjusted vegetation indices
NDVI LS/RE (Bnir − Bred)/(Bnir + Bred) Rouse et al. (1974)
MCARI RE ((Brededge − Bred) − 0.2*(Brededge − Bgreen))*(Brededge/Bred) Ramoelo et al. (2012)

Soil adjusted vegetation indices
SAVI1 LS/RE ((Bnir − Bred)/(Bni + Bred + 1.5))*(1 + 0.5) Huete (1988)
SAVI2 LS/RE ((Bni − Bred)/(Bni + Bred + 0.5))*(1 + 0.5) Huete (1988)
MNDVI LS/RE (NDVI/(1 + ((0.55*Bred − Bblue2 + 0.12))/(Bnir

2 − Bred
2 ))))*(1 + 0.001*(1/(0.55*Bred −

Bblue2 + 0.12)))
Liu and Huete (1994)

MTVI2 LS/RE (1.5*1.2*(Bnir − Bgreen) − 2.5*(Bred − Bgreen))/SQRT((2*Bnir + 1;2)2) −
(6*Bnir − SQRT(5*Bred)) − 0.5)

Haboudane et al. (2004)

MCARI/MTVI2 RE MCARI/MTVI2 Eitel et al. (2009)
WDVI LS/RE Bnir − (a*Bred) Qi et al. (1994)

Color adjusted vegetation indices
RI (color adjustment index) LS/RE (Bred − Bgreen)/(Bred + Bgreen) Escadafal and Huete (1991)
REI (color adjustment
index)

RE (Brededge − Bgreen)/(Brededge + Bgreen) Escadafal and Huete (1991)

NDVI SA LS/RE NDVI − (k*RI) Escadafal and Huete (1991)
SAVI2 SA LS/RE SAVI2 − (k*RI) Escadafal and Huete (1991)
WDVI SA LS/RE WDVI − (k*RI) acc.to Escadafal and Huete

(1991)
NDVI REI RE NDVI − (k*REI) Escadafal and Huete (1991)

First derivatives of reflectance (FDR) and ratios
FDR LS = 6, RE = 4 LS/RE First derivative of reflectance Entcheva-Campbell et al. (2004)
FDR Band ratios, all FDR LS/RE e.g. FDR Bandratio 54/32 = FDR54/FDR32, etc.

Principal components (PC) and ratios
PC #1-7/1-5 LS/RE Derived principal components
PC Band ratios, all PC LS/RE e.g. PC Bandratio 7/6 = PC#7/PC#6, etc.
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3.5.6. Texture variables
Texture measures proved to be very useful variables in existing bio-

mass related studies (Fuchs, Magdon, Kleinn, & Flessa, 2009; Sarker &
Table 2
Overview of themost important constructed SAV values, derived ratios and texture variables
used in this study. Variables are only an excerpt. A complete list is given in the Appendix
(Table A2).

Variable Sensor Description

Texture parameters
B05 TEXTURE SM RE Texture of Band 5 calculated by ENVI

angular second moment equation

SAV based variables
SAV 0.475–0.805 μm
Shrub2

RE Calculated using field site with 2nd highest
TB

SAV 0.475–0.805 μm Soil1 RE Calculated using no vegetation field site 1
SAV 0.475–0.805 μm Soil RE Calculated using all non-vegetated field site
SAV 0.475–0.805 μm
Shrub

RE Calculated using non soil field sites

SAV 0.655–0.865 μm
Shrub1

LS Calculated using field site with highest TB

SAV 0.655–0.865 μm
Shrub N10%

LS Calculated using field site with cover N 10%

SAV 0.655–0.865 μm Soil LS Calculated using all non-vegetated field sites
SAV 0.657–0.805 μm Soil1 RE Calculated using no vegetation field site 1
SAV 0.655–2.2 μm Shrub1 LS Calculated using field site with highest TB
SAV 0.655–2.2 μm Shrub2 LS Calculated using field site with 2nd highest

TB
SAV 0.655–2.2 μm Soil1 LS Calculated using no vegetation field site 1
SAV 0.655–2.2 μm Soil2 LS Calculated using no vegetation field site 2
SAV-Ratio 0.655–0.865 μm
Soil/ Shrub N10%

LS SAV 0.655–0.865 μm Soil/ SAV
0.655–0.865 μm Shrub N10%

SAV-Ratio 0.475–0.805 μm
Soil/Shrub

RE SAV 0.475–0.805 μm Soil/ SAV
0.475–0.805 μm Shrub

SA-Index 0.655–2.2 μm
(Soil
1 + 2)/(Shrub1 + 2)

LS (SAV 0.655–2.2 μm Soil1+ SAV
0.655–2.2 μm Soil2) / (SAV 0.655–2.2 μm
Shrub1+ SAV 0.655–2.2 μm Shrub2)
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Nichol, 2011). In the research area theywere successfully used for vegeta-
tion classification (Kraudzun et al., 2014). Therefore, we calculated grey
level co-occurrence based and grey level range texture filters on a 3 × 3
processing window. The calculation of these variables was restricted to
the RapidEye sensor as the resolution of the Landsat satellite of 30 m ×
30 m was unsuitable to capture small-scale dwarf shrub patterns.

3.5.7. SAV based variables
Due to the absence of real endmember sites in the research area, this

approachwas included as a substitution to full spectralmixture analysis
(SAM) that performed well in other regions to quantify vegetation frac-
tions (Yang et al., 2012). We included SAV based on different reference
sites with soil, dwarf shrub and meadow vegetation, which we refer to
as pseudo-endmembers. Similar to ratio indices, SAV ratios were
computed from different SAV as well.

3.5.8. Topographic variables
Topography is an important factor for biomass distribution in arid

environments (Sternberg & Shoshany, 2001). To include topographic
attributes as possible proxies for site suitability and background soil
conditions, the sine and cosine of slope aspect, slope angle and elevation
were calculated from the ASTER GDEM and used as predictors.

Thus, in total 169 predictors were available for Landsat-based
biomass estimation (RapidEye: 144), including 7 (5) spectral bands,
148 (140) derived spectral features, and four topographic attributes in
both predictor sets.

3.6. Statistical analysis

Numerous statistical and machine-learning techniques that have
become available in recent years for remote-sensing applications
could be used to address the particular challenges of this study
(Brenning, 2009). In particular, the large number of available, plausible
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spectral features compared to a relatively modest number of ground-
truth observations creates a high-dimensional problem, in which there
are more potential predictors than available observations (James,
Witten, Hastie, & Tibshirani, 2013). This issue, which may lead to over-
fitting ofmodels to the training data, is not uncommon in remote sensing.
Several methods have been proposed to make efficient use of the avail-
able predictors in this situation, ranging from penalization or shrinkage
approaches for statistical models to tree-based ensemble techniques
(Brenning, 2009; James et al., 2013). In this study, prior knowledge
furthermore supports the expectation that spectrally-derived predictors
are nearly linearly related to the response variable, biomass (Calvão &
Palmeirim, 2004; Holm, Cridland, & Roderick, 2003). We therefore focus
our comparison of candidate prediction methods on linear regression
methods with five different shrinkage heuristics (referred to as SLR,
SLR4, LASSO, RR and PLS). We refer to James et al. (2013) for mathemat-
ical details on the prediction methods.

The random forest (RF) technique has furthermore become popular
in remote sensing as a nonlinear and non-parametric alternative with
promising predictive capabilities on noisy and high-dimensional data
sets (Pal, 2005). RF has, in particular, become known as a tool for vari-
able selection based on variable importance assessments (Díaz-Uriarte
& Alvarez de Andrés, 2006). We therefore furthermore include this
technique in order to assess whether the presumed linearity of the
problem outweighs the advantages of the RF techniques.

Firstly, we applied linear regression with stepwise forward variable
selection as a tool for subset selection. In this method, predictors are
added to the model starting with the null model until a goodness-of-
fit criterion does not improve any further (Hastie & Pregibon, 1992).
We use the Akaike Information Criterion (AIC), which penalizes for
model size, and apply stepwise linear regression (SLR) in two different
implementations, one variant without restrictions regarding the per-
mitted number of predictors, and one variant with a maximum of four
variable selection steps, limitingmodel size to nomore than four predic-
tors (SLR4). This ‘hard’model size limitwas included to assess the utility
of easily applicable simple criteria that require limited data preparation.

We further used partial least squares (PLS) linear regression, which
constructs a set of predictors that are linear combinations of selected
original predictors (James et al., 2013). Unlike SLR, in each step only or-
thogonalized (residual) features are used in each subsequent step, and
the optimal number of steps is determined by an internal, speed-
optimized cross-validation of the RMSE (Mevik, Wehrens, & Liland,
2013). The PLS method effectively uses all available features, although
these are re-combined into a smaller number of features. This is related
to principal components (PC) linear regression, but it has the advantage
that the linear combinations are directed toward the response, whereas
PC are calculated in an unsupervised way (James et al., 2013).

Ridge regression (RR) and the lasso (LASSO) are two additional, rel-
atively recent approaches that use mathematically similar shrinkage
penalties. Roughly speaking, these penalties push less important coeffi-
cients closer to zero in the case of ridge regression, or effectively set
them to zero when the lasso technique is used (James et al., 2013).
Thus, while the lasso performs variable subset selection and therefore
produces sparse models that can be applied more easily in a predictive
context, ridge regression effectively uses all predictors, whichmay pro-
duce more stable models. Optimal shrinkage parameters are obtained
using an internal cross-validation.

Finally, the random forest (RF) technique is based on an ensemble of
binary regression trees that are fitted to randomly selected subsets of
the training data (Breiman, 2001). Variables and binary splits are
selected based on the greatest reduction in the residual sum of squares.
In addition to resampling the observations to obtain multiple trees, the
random forest technique also selects a random subset of predictors in
tree construction, which is particularly useful when large numbers of
possibly redundant predictors are available.We used the random forest
technique based on individual 500 trees and the square root of the
available predictors as the number of randomly selected predictors
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(Liaw & Wiener, 2002). The random forest technique has previously
been applied in biomassmapping (Powell et al., 2010) and other remote
sensing applications (Pal, 2005).

Predictive model performances were estimated 100-repeated using
10-fold spatial cross-validation. In 10-fold cross-validation, the available
data is partitioned into 10 disjoint subsets, each subset being used as a
test setwhile the remaining nine subsets form a training set for a predic-
tive model. This is repeated until each subset has been used once as the
test set, and the whole procedure is repeated 100 times to ensure that
the results are independent of a particular partitioning (James et al.,
2013). Since observations close to each other may be spatially
autocorrelated, we chose a spatial partitioning mechanism based on
10-means clustering of the coordinates of field sites (Brenning, 2012).
Bias, standard deviation and RMSE of prediction errors were estimated
in this way. Predictive models were furthermore fitted to obtain spatial
prediction maps of biomass for visual comparison, replacing any
negative predicted values with 0.

In order to assess the utility of data derived from different satellite
sensors for TB mapping, we estimated predictive model performances
for each of the six models using three different sets of predictor vari-
ables: Landsat-derived predictors (LS), RapidEye-derived predictors
(RE), and both sets combined (LSRE). The relative predictive impor-
tance of each predictor was furthermore measured using a
permutation-based approach. Here, each predictor was randomly per-
muted in order to determine the resulting increase in RMSE that is asso-
ciated with this loss of information (Strobl, Boulesteix, Zeileis, &
Hothorn, 2007; Brenning, 2012). This calculation was embedded in a
spatial cross-validation, using a total of 10000–50000 permutations
per predictor, depending on each model’s computational cost.

All statistical calculations were performed using R (R Core Team,
2013) with its packages ‘stats’ for SLR, ‘pls’ for PLS (Mevik et al., 2013),
‘glmnet’ for RR and LASSO (Friedman, Hastie, & Tibshirani, 2010),
‘randomForest’ for RF (Liaw & Wiener, 2002), ‘sperrorest’ for spatial
cross-validation and variable importance (Brenning, 2012), and
‘RSAGA’ for spatial prediction on raster stacks (Brenning, 2008).

4. Results

4.1. Allometric model

The constructed model showed a cross-validated R2 of 0.87. Back
transformed, cross-validated RMSE, RMSErel and BIAS were 71 g, 30%
and 1.95 g, respectively. The model shows similarly good performance
compared to dwarf shrub related allometric models elsewhere (Elzein,
Blarquez, Gauthier, & Carcaillet, 2011, Shoshany, 2012), although an
assessment that refers to other study designs must be interpreted
with caution. This indicates the suitability of the constructed model to
calculate dwarf shrub TB in the research area.

4.2. Empirical biomass models

Mean cross-validation performances of all prediction methods and
sensors ranged from RMSE values of 992 kg ha−1 (LASSO LSRE) to
1742 kg ha−1 (SLR LSRE), or 75–130% of the standard deviation of bio-
mass, with a generally small bias ≤104 kg ha−1 (Table 3). Overall,
LASSO, RR and SLR4 performed better than PLS, SLR and RF (relative
RMSE58–64% versus 64–103%),with PLS LSRE and SLR LSRE performing
the poorest with 70 and 103%, respectively. Thus, overall, two of the
three methods that perform variable subset selection (LASSO, SLR4,
SLR) were among the better-performingmethods, while the less sparse
SLR suffered from the strongest over-fitting among all linear models
examined (difference between cross-validation test and training set
RMSE 1080 kg ha−1 for SLR LSRE compared to 123–346 kg ha−1 for
all other linear models). Only RF over-fitted similarly strong to the
training set (RMSE differences 693–701 kg ha−1).



Table 3
Summary statistics of cross validated modeling results.

Bias
(kg ha−1)

Standard deviation
(kg ha−1)

RMSE
(kg ha−1)

RMSErel
(%)

LASSO LS −52 1038 1034 61
LASSO RE 31 1088 1085 64
LASSO
LSRE

5 996 992 58

RR LS −39 1043 1039 61
RR RE 38 1040 1038 61
RR LSRE −15 1010 1006 59
SLR4 LS −63 1067 1065 63
SLR4 RE 104 1076 1077 63
SLR4 LSRE 54 1076 1075 63
PLS LS −45 1110 1108 65
PLS RE 20 1093 1092 64
PLS LSRE −62 1184 1181 70
RF LS −76 1135 1132 67
RF RE −18 1125 1121 66
RF LSRE −65 1105 1103 65
SLR LS −67 1134 1131 67
SLR RE 100 1117 1117 66
SLR LSRE 22 1741 1742 103

Fig. 4. Scatterplots of observed and predicted biomass in kg ha−1, a) LSRE LASSO, b) LS
LASSO, c) LS RR. Predictions correspond to cross-validation test sets for a repetition with
RMSE close to cross-validation mean RMSE (LSRE LASSO: 991 kg ha−1, LS LASSO:
1021 kg ha−1, LS RR: 1036); all scatterplots correspond to the same cross-validation
partitioning.

147H. Zandler et al. / Remote Sensing of Environment 158 (2015) 140–155

MANUSCRIPT 1
The larger combined predictor set LSRE tended to produce equal or
better mean RMSEs compared to the predictor sets LS and RE in the
better-performing methods, while PLS and SLR achieved better results
with smaller predictor sets. There was no appreciable performance
difference between Landsat (LS) and RapidEye (RE) predictor sets.
Scatterplots of predicted versus observed values of the better-
performing models reveal a rather linear pattern, a consistent distribu-
tion with different models of the LS predictor set and slight differences
to the combined predictor set LSRE (Fig. 4).

Biomass maps obtained with three of the best performing models
(LSRE LASSO, LS LASSO, LS RR Fig. 5) generally showed similar results,
although LSRE LASSO predicted slightly lower TB. Highest predicted TB
was found on the slopes of side valleys at higher altitudes and lowest
amounts were predicted for large plains at lower altitudes. Predicted
TB tended to increase towards southwest. Furthermore, many areas
with low predicted TB were situated near villages or major roads. This
distribution reflects visual observations made during field work.

4.3. Variable importance

Variables derived fromASTERGDEMwere among the 10most impor-
tant predictors in all of the 4 best performing single sensor set models
(Fig. 6). Furthermore, variables built from SAVs, both as raw SAV or as
index and covering different spectral regions, were important predictors
in allmodels, especially in the LS LASSO and both RRmodels. Color adjust-
ed vegetation indices ranked highly in the LASSOmodels butwere not im-
portant in the RR models and only one soil adjusted vegetation indexwas
among the important predictors in both of the RE models. Another set of
predictors that played an important role in all models except the RE
LASSO model were PC and derived ratios. Texture variables ranked
among the 10 best predictors in the REmodels. FDR variables and derived
ratios showed also some importance in half of the models. Finally, the
combined index MCARI/MTVI2 was very important for both RE models.

Neither themost common indices (e.g. NDVI) nor rawbands or band
ratios were among the most important predictors of the 4 best
performing single sensor set models.

5. Discussion

5.1. Overall performance of the biomass model

To our knowledge, this is the first study to quantify and map shrub
TB in such an arid climate using optical sensors, addressing amajor chal-
lenge in dryland remote sensing. We showed that predictive modeling
of TB in this kind of landscape is possible with different sensors and
40



Fig. 5. Maps of predicted biomass in kg ha−1. a) LSRE LASSO, b) LS LASSO and c) LS RR.
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techniques, although cross-validated, relative RMSE were high with the
better values ranging around 60%. These values are similar to other
studies that analyze above ground biomass (AGB) or above ground car-
bon using spectral data (Fuchs et al., 2009; Powell et al., 2010), although
direct numerical comparisons of performance measures between stud-
ies with different sampling and measurement procedures are problem-
atic. RapidEye or the combined predictor set showed no appreciable
performance improvement over Landsat-derived features, and models
that utilize all predictors (RR, PLS, RF) did not outperform sparse
methods, in particular LASSO and SLR4.
41
The observed prediction errors underline the limitations and uncer-
tainties of dwarf shrub TB mapping from optical remote-sensing data. A
general problem in the spectral derivation of dwarf shrub TB is the fact
that a large part of the plant consists of non-photosynthetic, woody
matter and the photosynthetic signal, captured by most spectral bands
and indices, may be low in relation to the biomass amount. Furthermore,
grasses, either associated with shrubs or growing in cushions within
shrubs, may constitute a certain amount of the spectral signal of an area
without contributing to TB. This may lead to model bias in areas with
higher or lower than average amounts of grass cover. This problem was
also mentioned by other authors, and a multi-temporal approach may
be adequate to identify the spectral influence of grass vegetation
(Duncan, Stow, Franklin, & Hope, 1993; Holm et al., 2003). Shoshany
and Svoray (2002), for example, successfully mapped soil, herb, shrub
and dwarf shrub cover in a semi-arid to arid environment using a
multi-temporal approach based on seasonal phenological differences.
However, such techniques require certain environmental conditions, e.g.
that woody vegetation has a stable phenology year round (Roderick,
Noble, & Cridland, 1999) or that germination and growth of vegetation
is closely related to rainfall distributions (Shoshany & Svoray, 2002). In
contrast to that, the short vegetation period in the Eastern Pamirs, classi-
fied as cold and arid, is increasingly determined by temperature and
shrub leaves are dropped with the onset of cold conditions during fall
(Walter & Breckle, 1986). At the same time, wilting of grasses takes
place. Therefore, phenological conditions of different plants aremore con-
currently timed in the Eastern Pamirs compared to warmer arid regions.
Furthermore, Shoshany and Svoray (2002) showed that phenologically
derived cover estimates led to reduced accuracies with low vegetation
cover which reduces the applicability of such an approach in the research
area. Therefore, fine scale differences in phenology between dwarf shrub
vegetation and grasses, accurately detectable by vegetation indices, have
to be studied to apply this method in the research area.

Predictive uncertainties can also partly be attributed to the use of an
allometric model to obtain plot-scale biomass estimates as the response
variable. Our allometric model achieved a relative RMSE error of
approximately 30% (absolute RMSE: 70 g) at the plant level. With on
average 34 plants per 4 m × 4 m plot and two plots per field site, this
would be expected to result in a RMSE of about 180 kg ha−1 for TB at
the field site level. Finally, a certain amount of prediction error can be
attributed to the within-site variability since only a small fraction of a
pixel’s area (3.6% of Landsat pixels, or 0.9% of 60 m × 60 m field sites)
and of its dwarf shrub population were measured. An analysis of
variance of plot-level TB observations suggests that plot-scale (4 m ×
4 m) TB estimates varied, on average, with a standard deviation of
732 kg ha−1 within the 60 m × 60 m field sites. This results in an
approximate precision of 518 kg ha−1 for field site TB estimation from
two plots in this study, which corresponds to about one-quarter of the
cross-validated prediction variance of our models. To reduce these
sampling-related uncertainties substantially, much larger field efforts
and environmental impacts would be required. Roughly speaking, four
times the field data would be needed to improve sampling-related com-
ponents of precision by 50%. On the other hand, this implies that the “net”
RMSE of our models after accounting for sampling-related uncertainties
is more likely in the order of 850 kg ha−1 for our best-performingmodel.

5.2. Relevance of predictors

One of the main limitations for dwarf shrub TB remote-sensing
arises due to the extreme aridity and the associated strong influence
of soil background. This problemmay be enhanced in areas with highly
variable geology as found in our study region (Vanselow, 2011). To ap-
proach this problem, we applied several alternative techniques that
have been proposed in the literature to relieve this issue. Given the
large number of predictors that have been proposed and the differences
in mathematical assumptions of the available models, our variable im-
portance assessment provides a general overview of promising



Fig. 6.Results of variable importancemeasures showing the10best predictors of a) LS LASSO, b) RE LASSO, c) LSRR andd)RERR. Values between0 and1 represent relative variable importance.
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predictors that warrant further research with more focused study de-
signs. In our study none of the unadjusted vegetation indicesmade a sub-
stantial contribution in predicting TB in this environment. Also soil
adjusted vegetation indices that incorporated slope or intercept of soil
line alone (e.g. TSAVI, PVI, WDVI) were not among the most important
variable sets in anymodels. This is consistentwith thefindings of Calvão
and Palmeirim (2011), who found no benefits in soil-adjusted indices in
Mediterranean shrubland due to the complexity of constructing a gen-
erally valid soil line. Similarly, Van Der Meer et al. (2001) state that
soil-adjusted indices did not improve their AGB estimates and may
have introduced additional scatter. In our study, however, the statistical
uncertainty associated with soil line estimation (e.g. LS NIR-red bands:
slope 1.15, standard error 0.06, intercept −0.003, standard error
0.016) implies only minor uncertainty in the resulting TSAVI and
WDVI values (spearman correlations of 0.98/0.99 and 0.95/0.95 under
a +/− one standard error change in the adjustment parameter/s).
However, Veraverbeke et al. (2012) state that soil-adjusted vegetation
indices outperformed others in environments with variable substrates
and a single vegetation type, conditions that also apply to our study re-
gion after the pre-classification step. In contrast to these indices with
adjustment coefficients derived from a soil line, two soil adjusted vegeta-
tion indiceswithfixed adjustment coefficientswere among themost im-
portant predictors in the RE models. Especially the more complex of
these, the combination indexMCARI/MTVI2 ranked at 1st and 2nd posi-
tion, which may be explained by its low sensitivity to soil background
variation compared to single indices (Eitel et al., 2009). Among the veg-
etation indices, color adjusted vegetation indices that contain additional
separate indices to correct for soil effects were frequently listed as im-
portant predictors. This is in agreement with Escadafal and Huete
(1991) whose color adjusted indices performed considerably better
compared to NDVI or SAVI in detecting sparse vegetation amounts.

SAV based variables were among another group of important
predictors, showing that this is a valuable approach even when real
endmember spectra are not available. SAV may be less susceptible to
background noise due to their insensitivity to brightness variations
(Kruse et al., 1993) and may better account for soil variation by
encompassing a greater spectral range than most single indices. Addi-
tionally some of them account for the soil signal already by including
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bare soil pseudo-endmembers. Our variable importances furthermore
support the utility of SAV covering a restricted spectral region, in partic-
ular the red to SWIR region. This agrees with results obtained by Asner,
Wessman, Bateson, and Privette (2000), who state that this spectral re-
gion may be able to differentiate between bare soil, green and non-
green vegetation even under arid conditions.

The fact that PC and ratios played such an important role in a number
of models may be due to the large share of information included in one
single variable. PC variables may therefore also be able to reproduce
shrub and soil characteristics better than vegetation indices. Finally,
FDR and FDR ratios did show some importance in predicting TB. This
could be because derivative based ratios are able to capture pairs of gra-
dients in the spectrum (Peña, Brenning, & Sagredo, 2012), e.g. a charac-
teristic curve pattern from the green to infrared spectral regions, which
may be an important capability to detect TB in the research area.

Besides spectral data, topographic variables were also ranked among
the best 10 predictors in all of the 4 best performing single sensormodels,
which is consistentwith results of Powell et al. (2010)who state that bio-
physical variables (e.g. elevation, slope) were the secondmost important
predictors for AGB in parts of their research area. This may be attributed
to the fact that water availability, and hence plant growth, may be con-
trolled by topography. In particular, the assumed relationships between
slope orientation and evapotranspiration and between elevation and
(orographic) precipitation may have contributed to the importance of
topographic predictors. This is in agreement with results obtained by
Sternberg and Shoshany (2001) who state that slope aspect significantly
influenced shrub biomass in a region with limited water availability.
Furthermore, as shown by Shoshany and Karnibad (2011), also direct
use of precipitation data in biomass modeling can significantly enhance
mapping of shrub vegetation on a larger scale.

One texture variable did rank among the most important predictor
variables in both RE models. In other studies, texture measures
outperformed other variables in biomass or carbon prediction (Fuchs
et al., 2009; Sarker & Nichol, 2011), which was not the case in this
study. As these authors analyze forest environments, texture related
to biomass variations may be simpler to detect in satellite images com-
pared to a finer resolution thatwould be required to detect variations in
dwarf shrub vegetation that could be linked to biomass amounts
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(Vanselow, 2011). In addition to the applied texture variables, texture
measures of soil adjusted indices could be incorporated in the study
which showed improved performance in other studies (Vanselow &
Samimi, 2014). Also different window sizes and texture filters could
be utilized (Blanco, Metternicht, & Del Valle, 2009, Dobrowski, Safford,
Cheng, & Ustin, 2008). However, we did not fully utilize the whole
range of possible texture variables because the abundance of existing
methods and an associated evaluation goes beyond the scope of this
study. Besides, as dwarf shrub patterns are expressed on the sub
meter scale, texture variables derived from a 5 m × 5 m resolution
also contain illumination, rock, soil and other signals beside plant infor-
mation (Shoshany, 2000). Hence, further comprehensive research and
mapping would be necessary to assess the relative contribution of dif-
ferent sources to texture variations with the applied resolution.

5.3. Performance of statistical models

The availability of a large number of remote sensing variables to
predict a biophysical variable creates new challenges, but also provides
the opportunity to extract the relevant information and filter important
predictors. Two models using shrinkage techniques (LASSO, RR)
outperformed the other models, which is in agreement with existing
studies in a high dimensional remote sensing setting. Lazaridis,
Verbesselt, and Robinson (2011) state that both techniques showed
better performance in comparison to others and Gaughan, Holdo, and
Anderson (2013) successfully quantified tree cover using LASSO. The
restricted SLR4 that uses variable subset selection also performed well
but the unrestricted SLR was among the poorest performing modeling
techniques. This is contrary to results obtained by Fuchs et al. (2009)
who successfully applied unrestricted SLR to select suitable predictors
among image bands, indices and texture measures for above ground
carbon modeling. Likewise, Sarker and Nichol (2011) evaluated SLR as
a suitable approach in modeling forest AGB.

In this study, the tree based RF model performed poorer than most
other models, which is different to results obtained by Powell et al.
(2010), where RF resulted in the lowest RMSE in comparison to other
models in predicting forest biomass. Furthermore, PLS resulted in seri-
ous over-fitting which is in contrast to findings of Mitchell, Glenn,
Sankey, Derryberry, and Germino (2012), where it is shown that PLS
provides a good approach when modeling with large predictor sets.

5.4. Sensor performance

Anadditional objective of this studywas to assess the ability of the two
applied sensors, RapidEye and Landsat OLI, for biomass modeling in arid
environments. As the Landsat 8 satellite has only been in orbit since be-
ginning of 2013, this is, to our knowledge, the first study to compare the
performance of both sensors in biomass remote sensing. Our results sug-
gest that none of the sensors performs considerably better than the other.
Furthermore, a combination of the sensors did not significantly improve
modeling results. Surprisingly, the RapidEye sensor with higher spatial
resolution and an additional red edge band designed for vegetation anal-
ysis, showing good performance in arid regions in other studies (Li et al.,
2012; Ramoelo et al., 2012; Ren et al., 2011), did not improvemodel per-
formance. According to our variable assessment, the red edge band was
important in those indices that account for background information.
However, the red edge band did not lead to a superiority of RE over LS
models. A reason for equal performance of the OLI sensormay be the cov-
erage of the SWIR spectral region which is regarded as important in de-
tecting shrubs (Asner et al., 2000) or non-photosynthetic vegetation
(Ren, Zhou, Zhang, & Zhang, 2012). This suggests that improved dwarf
shrub TB predictions may be possible by using hyperspectral sensors.

Spatially, RapidEye with its five meter pixel size, is still too coarse to
recognize dwarf shrubs as distinctive delimitable entities, therefore, ob-
ject based approaches which were successfully applied with large
woody vegetation in other arid environments (Spiekermann, Brandt,
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& Samimi, 2015) or methodologies that incorporate the influence of
patch patterns on shrub biomass (Shoshany, 2012), could not be uti-
lized in our study. Furthermore, Frank and Tweddale (2006) showed
that only very high resolution imagery of below one meter was able to
significantly increase detection of dwarf shrubs compared to high reso-
lution data in an arid environment. Hence and becausemost vegetation
formations in the Eastern Pamirs generally cover larger patches suffi-
ciently detectable by the Landsat OLI sensor as well, the higher resolu-
tion of RapidEye data may not have led to a better performance in
biomass mapping in the research area.

Regarding temporal resolution, RapidEye is highly resolved with a
revisiting period between one to five and a half days (RapidEye AG,
2009) compared to 16 days with Landsat OLI. Such a high temporal fre-
quency may be important to analyze phenological changes in remote
sensing studies with a multi-temporal approach or to better capture
cloud free images in regions where overcast conditions prevail
(Maselli, Gilabert, & Conese, 1998). However, these circumstances do
not apply to the Eastern Pamirs and the temporal resolution of Landsat
may be regarded as sufficient even formulti-temporal decomposition in
arid environments (Shoshany & Svoray, 2002).

As discussed above, TBprediction is complex and connected to anum-
ber of limitations. However, this is thefirst study that generates spectrally
resolved dwarf shrub biomass information in the research area. Further-
more, when compared to existing work of dwarf shrub formation classi-
fication (Kraudzun et al., 2014; Vanselow & Samimi, 2014), there is some
consistency in results. Besides, results are ecologically plausible since
higher TB was predicted at higher elevations and in the Southwest,
which may reflect the main precipitation gradient with rainfall rates in-
creasing from Northeast to Southwest (Vanselow, 2011). Moreover, the
smallest amounts of TB were predicted for regions that are near larger
settlements or in the vicinity of major roads, which may reflect the
increased anthropogenic use of dwarf shrub biomass in those areas.
These rather qualitative reasons show that the presented modeling re-
sults represent valuable information in remote sensing based desertifica-
tion assessment in spite of relatively large quantitative prediction errors.

6. Conclusions

This study showed that remote sensing based mapping of dwarf
shrub TB is possible even under conditions with extremely low vegeta-
tion cover, although the predictions are subject to substantial uncer-
tainties. The lasso technique for linear regression is a particularly
appealing, sparse model that performed very well in this study. While
some of the models used, in particular random forest and stepwise lin-
ear regression, suffered from strong over-fitting to the training data, the
better performing predictionmethods achieved cross-validation perfor-
mances that were closer to their training-set errors. This study indicates
that variables that incorporate the information of several bands, cover-
ing vegetation as well as background information, may be especially
suitable for this arid setting. Both sensors, Landsat OLI and RapidEye,
as well as their combination performed equally well. Future research
may therefore benefit froma reduced set of predictors froma single sen-
sor based on the variables identified as important in this study.
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Table A1
Derived indices, principal components, FDR and respective ratios used in this study. (S = sensor; Bblue2 = LS Band2/RE Band1; Bgreen = LS Band3/RE Band2; Bred = LS Band4/RE Band3;
Brededge = RE Band4; Bnir = LS & RE Band5; Bswir1 = LS Band6; Bswir2 = LS Band7; a = slope of the soil line; b = intercept of the soil line; k – slope of linear correlation between Index
and adjustment index; nine bare soil field sites were used for construction of soil related parameters).

Variable S Formula Reference

Unadjusted vegetation indices
NDVI LS/RE (Bnir − Bred)/(Bnir + Bred) Rouse et al. (1974)
Band ratios (BR); all bands LS/RE e.g. Bswir2/Bswir1;Bswir2/Bnir; etc. Bannari et al. (1995)
NDRE RE (Bnir − Brededge)/(Bnir + Brededge) Eitel et al. (2009)
NDTI LS (Bswir1 − Bswir2)/(Bswir1 + Bswir2) Gelder et al. (2009)
RDVI LS/RE (Bnir − Bred)/SQRT(Bnir + Bred) Ramoelo et al. (2012)
RDVI2 RE (Bnir − Brededge)/SQRT(Bnir + Brededge) Ramoelo et al. (2012)
NDRI LS (Bred − Bswir2)/(Bred + Bswir2) Gelder et al. (2009)
NDI5 LS (Bnir − Bswir1)/(Bnir + Bswir1) Gelder et al. (2009)
NDI7 LS (Bnir − Bswir2)/(Bnir + Bswir2) Gelder et al. (2009)
NDSVI LS (Bswir1 − Bred)/(Bswir1 + Bred) Gelder et al. (2009)
PPR LS/RE (Bgreen − Bblue2)/(Bgreen + Bblue2) Ramoelo et al. (2012)
NRI LS/RE (Bgreen − Bred)/(Bgreen + Bred) Ramoelo et al. (2012)
SIPI LS/RE (Bnir − Bblue2)/(Bnir − Bred) Ramoelo et al. (2012)
TVI RE 0.5*(120*(Brededge − Bgreen) − 200*

(Bred − Bgreen))
Ramoelo et al. (2012)

MCARI RE ((Brededge − Bred) − 0.2*(Brededge − Bgreen))*
(Brededge/Bred)

Ramoelo et al. (2012)

MTCI RE (Bnir − Brededge)/(Brededge − Bred) Ramoelo et al. (2012)
TCARI RE 3*((Brededge − Bred) − 0.2*(Brededge − Bgreen)*

(Brededge/Bred))
Ramoelo et al. (2012)

MOIST LS/RE (Bnir − Bblue2)/(Bnir + Bblue2) Homer et al. (2012)
LAI LS/RE (Bnir)/(Bred + Bgreen) Homer et al. (2012)
SLAI LS (Bnir/(Bred + Bgreen) Homer et al. (2012)
NDVI53 LS/RE (Bnir − Bgreen)/(Bnir + Bgreen) Rouse et al. (1974)
NDRE/ NDVI RE NDRE/NDVI Eitel et al. (2009)

Soil adjusted vegetation indices
SAVI1 LS/RE ((Bnir − Bred)/(Bni + Bred + 1.5))*

(1 + 0.5)
Huete (1988)

SAVI2 LS/RE ((Bni − Bred)/(Bni + Bred + 0.5))*
(1 + 0.5)

Huete (1988)

MSAVI1 LS/RE (2*Bnir + 1 − SQRT(2*Bnir + 1)2 − 8*
(Bnir − Bred))/2

Qi et al. (1994)

OSAVI RE (1 + 0.16)*(Bnir − Brededge)/(Bnir + Brededge + 0.16) Rondeaux et al. (1996)
OSAVI2 LS/RE (1 + 0.16)*(Bnir − Bred)/(Bnir + Bred + 0.16) Rondeaux et al. (1996)
MNDVI LS/RE (NDVI/(1 + ((0.55*Bred − Bblue2 + 0.12))/(Bnir

2 − Bred
2 ))))*

(1 + 0.001*(1/(0.55*Bred − Bblue2 + 0.12)))
Liu and Huete (1994)

MNDVI2 RE (NDVI/(1 + ((0.55*Brededge − Bblue2 + 0.12))/(Bnir
2 − Brededge

2 ))))
*(1 + 0.001*(1/(0.55*Brededge − Bblue2 + 0.12)))

Liu and Huete (1994)

EVI LS/RE 2.5*(Bnir − Bred)/Bnir + (6*Bred) − (7.5*Bblue2) + 1 Ramoelo et al. (2012)
SARVI LS/RE (1 + 0.5)*(Bnir − Bred − Bblue2 − Bred)/

(Bnir − Bred − Bblue2 − Bred + 0.5)
Haboudane et al. (2004)

MTVI2 LS/RE (1.5*1.2*(Bnir − Bgreen) − 2.5*(Bred − Bgreen))/SQRT((2*Bnir + 1;2)2) −
(6*Bnir − SQRT(5*Bred)) − 0.5)

Haboudane et al. (2004)

TCARI/OSAVI RE TCARI/OSAVI Eitel et al. (2009)
MCARI/ OSAVI RE MCARI/OSAVI Eitel et al. (2009)
MCARI/MTVI2 RE MCARI/MTVI2 Eitel et al. (2009)
WDVI LS/RE Bnir − (a*Bred) Qi et al. (1994)
WDVI REDEDGE RE Bnir − (a* Brededge) acc.to Qi et al. (1994)
PVI LS/RE (Bnir − (a*Bred) − b)/SQRT(1 + a2) Elvidge and Chen (1995)
PVI REDEDGE RE (Bnir − (a* Brededge) − b)/SQRT(1 + a2) acc.to Elvidge and Chen

(1995)
MSAVI ORIG LS/RE ((Bnir − Bred)/(Bnir + Bred + 1 − (2*a*NDVI*WDVI)))*

(1 + 1 − (2*a*NDVI*WDVI))
Qi et al. (1994)

MSAVI ORIG REDEDGE RE ((Bnir − Brededge)/(Bnir + Brededge +1 − (2*a*NDVIrededge*WDVIrededge)))*
(1 + 1 − (2*a*NDVIrededge*WDVIrededge))

acc.to Qi et al. (1994)

TSAVI LS/RE (a*(Bnir − a*Bred − b))/(a*Bnir + Bred − a*b +
(0.08*(1 + a2)))

Qi et al. (1994)

TSAVI REDEDGE RE (a*(Bnir − a* Brededge − b))/(a*Bnir + Brededge − a*b +
(0.08*(1 + a2)))

acc.to Qi et al. (1994)

SACRI LS a*(Bred − Bswir1 − b)/(a*Bred + Bswir1 − a*b) Ren et al. (2012)
MSACRI LS 5*(a*(Bswir1 − a*Bswir2 − b))/

(a*Bswir1 + Bswir2 + a*b)
Ren et al. (2012)

Color adjusted vegetation indices
RI (color adjustment index) LS/RE (Bred − Bgreen)/(Bred + Bgreen) Escadafal and Huete (1991)
REI (color adjustment
index)

RE (Brededge − Bgreen)/(Brededge + Bgreen) Escadafal and Huete (1991)

(continued on next page)
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Table A1 (continued)

Variable S Formula Reference

RBI (color adjustment
index)

LS/RE (Bred − Bblue2)/(Bred + Bblue2) acc.to Escadafal and Huete
(1991)

SWI1 (color adjustment
index)

LS (Bswir1 − Bred)/(Bswir1 + Bred) acc.to Escadafal and Huete
(1991)

SWI2 (color adjustment
index)

LS (Bswir1 − Bred)/(Bswir1 + Bred) acc.to Escadafal and Huete
(1991)

NDVI SA LS/RE NDVI − (k*RI) Escadafal and Huete (1991)
SAVI1 SA LS/RE SAVI1 − (k*RI) Escadafal & Huete, 1991
SAVI2 SA LS/RE SAVI2 − (k*RI) Escadafal and Huete (1991)
TSAVI SA LS/RE TSAVI − (k*RI) acc.to Escadafal and Huete

(1991)
TSAVI REDEDGE SA RE TSAVI REDEDGE − (k*RI) acc.to Escadafal and Huete

(1991)
WDVI SA LS/RE WDVI − (k*RI) acc.to Escadafal and Huete

(1991)
WDVI REDEDGE SA RE WDVI REDEDGE − (k*RI) acc.to Escadafal and Huete

(1991)
NDVI RBI LS/RE NDVI − (k*RBI) acc.to Escadafal and Huete

(1991)
SAVI1 RBI LS/RE SAVI1 − (k*RBI) acc.to Escadafal and Huete

(1991)
SAVI2 RBI LS/RE SAVI2 − (k*RBI) acc.to Escadafal and Huete

(1991)
TSAVI RBI LS/RE TSAVI − (k*RBI) acc.to Escadafal and Huete

(1991)
TSAVI REDEDGE RBI RE TSAVI REDEDGE − (k*RBI) acc.to Escadafal and Huete

(1991)
WDVI RBI LS/RE WDVI − (k*RBI) acc.to Escadafal and Huete

(1991)
WDVI REDEDGE RBI RE WDVI REDEDGE − (k*RBI) acc.to Escadafal and Huete

(1991)
NDVI SWI1 LS NDVI − (k*SWI1) acc.to Escadafal and Huete

(1991)
SAVI 1 SWI1 LS SAVI1 − (k*SWI1) acc.to Escadafal and Huete

(1991)
SAVI 2 SWI1 LS SAVI2 − (k*SWI1) acc.to Escadafal and Huete

(1991)
TSAVI SWI1 LS TSAVI − (k*SWI1) acc.to Escadafal and Huete

(1991)
WDVI SWI1 LS WDVI − (k*SWI1) acc.to Escadafal and Huete

(1991)
NDVI SWI2 LS NDVI − (k*SWI2) acc.to Escadafal and Huete

(1991)
SAVI 1 SWI2 LS SAVI1 − (k*SWI2) acc.to Escadafal and Huete

(1991)
SAVI 2 SWI2 LS SAVI2 − (k*SWI2) acc.to Escadafal and Huete

(1991)
TSAVI SWI2 LS TSAVI − (k*SWI2) acc.to Escadafal and Huete

(1991)
WDVI SWI2 LS WDVI − (k*SWI2) acc.to Escadafal and Huete

(1991)
NDRE SA RE NDRE − (k*RI) acc.to Escadafal and Huete

(1991)
NDRE RBI RE NDRE − (k*RBI) acc.to Escadafal and Huete

(1991)
NDVI REI RE NDVI − (k*REI) Escadafal and Huete (1991)
NDRE REI RE NDRE − (k*REI) acc.to Escadafal and Huete

(1991)
SAVI1 REI RE SAVI1 − (k*REI) Escadafal and Huete (1991)
SAVI2 REI RE SAVI2 − (k*REI) Escadafal and Huete (1991)
TSAVI REI RE TSAVI − (k*REI) acc.to Escadafal and Huete

(1991)
TSAVI REDEDGE REI RE TSAVI REDEDGE − (k*REI) acc.to Escadafal and Huete

(1991)
WDVI REI RE WDVI − (k*REI) acc.to Escadafal and Huete

(1991)
WDVI REDEDGE REI RE WDVI REDEDGE − (k*REI) acc.to Escadafal and Huete

(1991)

First derivatives of reflectance (FDR) and ratios
FDR LS = 6, RE = 4 LS/RE First derivative of reflectance Entcheva-Campbell et al.

(2004)
FDR Band ratios, all FDR LS/RE e.g. FDR Bandratio 54/32 = FDR54/FDR32, etc.

Principal components (PC) and ratios
PC #1-7/1-5 LS/RE Derived principal components
PC Band ratios, all PC LS/RE e.g. PC Bandratio 7/6 = PC#7/PC#6, etc.
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Table A2
Overview of constructed SAV values, derived ratios and texture attributes used in this study.

Variable Sensor Description

Texture parameters
B04 TEXTURE CONTRAST RE Texture of Band 4 calculated by ENVI contrast equation
B04 TEXTURE CORRELATION RE Texture of Band 4 calculated by ENVI correlation equation
B04 TEXTURE SM RE Texture of Band 4 calculated by ENVI angular second moment equation
B04 TEXTURE VARIANCE RE Texture of Band 4 calculated by ENVI variance equation
B05 TEXTURE CONTRAST RE Texture of Band 5 calculated by ENVI contrast equation
B05 TEXTURE CORRELATION RE Texture of Band 5 calculated by ENVI correlation equation
B05 TEXTURE SM RE Texture of Band 5 calculated by ENVI angular second moment equation
B05 TEXTURE VARIANCE RE Texture of Band 5 calculated by ENVI variance equation
NDRE TEXTURE RANGE RE Texture of NDRE calculated by TNTmips range filter
NDVI TEXTURE RANGE RE Texture of NDVI calculated by TNTmips range filter

SAV based variables
SAV 0.44–2.2 μm Shrub1 (RE = 0.475–0.805 μm) LS/RE Calculated using field site with highest TB
SAV 0.44–2.2 μm Shrub N10% (RE = 0.475–0.805 μm) LS/RE Calculated using field sites with cover N 10%
SAV 0.44–2.2 μm GD (RE = 0.475–0.805 μm) LS/RE Calculated using meadow field sites
SAV 0.44–2.2 μm Shrub2 (RE = 0.475–0.805 μm) LS/RE Calculated using field site with 2nd highest TB
SAV 0.44–2.2 μm Soil1 (RE = 0.475–0.805 μm) LS/RE Calculated using no vegetation field site 1
SAV 0.44–2.2 μm Soil2 (RE = 0.475–0.805 μm) LS/RE Calculated using no vegetation field site 2
SAV 0.44–2.2 μm Soil (RE = 0.475–0.805 μm) LS/RE Calculated using all non-vegetated field site
SAV 0.655–0.865 μm Shrub1 (RE = 0.657–0.805 μm) LS/RE Calculated using field site with highest TB
SAV 0.655–0.865 μm Shrub N10% (RE = 0.657–0.805 μm) LS/RE Calculated using field site with cover N 10%
SAV 0.655–0.865 μm GD (RE = 0.657–0.805 μm) LS/RE Calculated using meadow field site
SAV 0.655–0.865 μm Shrub2 (RE = 0.657–0.805 μm) LS/RE Calculated using field site with 2nd highest TB
SAV 0.655–0.865 μm Soil1 (RE = 0.657–0.805 μm) LS/RE Calculated using no vegetation field site 1
SAV 0.655–0.865 μm Soil2 (RE = 0.657–0.805 μm) LS/RE Calculated using no vegetation field site 2
SAV 0.655–0.865 μm Soil (RE = 0.657–0.805 μm) LS/RE Calculated using all non-vegetated field sites
SAV 0.655–2.2 μm Shrub1 LS Calculated using field site with highest TB
SAV 0.655–2.2 μm GD LS Calculated using meadow field sites
SAV 0.655–2.2 μm Shrub2 LS Calculated using field site with 2nd highest TB
SAV 0.655–2.2 μm Soil1 LS Calculated using no vegetation field site 1
SAV 0.655–2.2 μm Soil2 LS Calculated using no vegetation field site 2
SAV 0.71–0.805 μm Shrub1 RE Calculated using field site with highest TB
SAV 0.71–0.805 μm Shrub N10% RE Calculated using field site swith cover N 10%
SAV 0.71–0.805 μm GD RE Calculated using meadow field sites
SAV 0.71–0.805 μm Shrub2 RE Calculated using field site with 2nd highest TB
SAV 0.71–0.805 μm Soil1 RE Calculated using no vegetation field site 1
SAV 0.71–0.805 μm Soil2 RE Calculated using no vegetation field site 2
SAV 0.71–0.805 μm Soil RE Calculated using all non-vegetated field sites
SAV 0.475–0.805 μm Shrub RE Calculated using non soil field sites
SAV-Ratio 0.44–2.2 (0.475–0.805) μm Soil/ Shrub N10% LS/RE SAV 0.44–2.2 μm Soil/ SAV 0.44–2.2 μm Dense
SAV-Ratio 0.44–2.2 (0.475–0.805) μm Soil/GD LS/RE SAV 0.44–2.2 μm Soil/ SAV 0.44–2.2 μm GD
SAV-Ratio 0.655–0.865 (0.657–0.805) μm Soil/ Shrub N10% LS/RE SAV 0.655–0.865 μm Soil/ SAV 0.655–0.865 μm Shrub N10%
SAV-Ratio 0.655–0.865 (0.657–0.805) μm Soil/GD LS/RE SAV 0.655–0.865 μm Soil/ SAV 0.655–0.865 μm GD
SAV-Ratio 0.71–0.805 μm Soil/ Shrub N10% RE SAV 0.71–0.805 μm Soil/ SAV 0.71–0.805 μm Shrub N10%
SAV-Ratio 0.71–0.805 μm Soil/GD RE SAV 0.71–0.805 μm Soil/ SAV 0.71–0.805 μm GD
SAV-Ratio 0.475–0.805 μm Soil/Shrub RE SAV 0.475–0.805 μm Soil/ SAV 0.475–0.805 μm Shrub
SA-Index 0.44–2.2 (RE = 0.475–0.805) μm (Soil
1 + 2)/(Shrub1 + 2)

LS/RE (SAV 0.44–2.2 μm Soil1+ SAV 0.44–2.2 μm Soil2) / (SAV 0.44-2.2 μm Shrub1+ SAV 0.44–2.2 μm
Shrub2)

SA-Index 0.655–0.865 (RE = 0.657–0.805) μm (Soil
1 + 2)/(Shrub1 + 2)

LS/RE (SAV 0.655–0.865 μm Soil1+ SAV 0.655–0.865 μm Soil2) / (SAV 0.655–0.865 μm Shrub1+ SAV
0.655–0.865 μm Shrub2)

SA-Index 0.655–2.2 μm (Soil 1 + 2)/(Shrub1 + 2) LS (SAV 0.655–2.2 μm Soil1 + SAV 0.655–2.2 μm Soil2) / (SAV 0.655–2.2 μm Shrub1 + SAV
0.655–2.2 μm Shrub2)
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Abstract: In spite of considerable efforts to monitor global vegetation, biomass quantification 
in drylands is still a major challenge due to low spectral resolution and considerable background 
effects. Hence, this study examines the potential of the space-borne hyperspectral Hyperion 
sensor compared to the multispectral Landsat OLI sensor in predicting dwarf shrub biomass in 
an arid region characterized by challenging conditions for satellite-based analysis: The Eastern 
Pamirs of Tajikistan. We calculated vegetation indices for all available wavelengths of both 
sensors, correlated these indices with field-mapped biomass while considering the multiple 
comparison problem, and assessed the predictive performance of single-variable linear models 
constructed with data from each of the sensors. Results showed an increased performance of the 
hyperspectral sensor and the particular suitability of indices capturing the short-wave infrared 
spectral region in dwarf shrub biomass prediction. Performance was considerably poorer in the 
area with less vegetation cover. Furthermore, spatial transferability of vegetation indices was not 
feasible in this region, underlining the importance of repeated model building. This study 
indicates that upcoming space-borne hyperspectral sensors increase the performance of biomass 
prediction in the world’s arid environments. 
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1. Introduction 

Remote sensing is an essential tool to study degradation of vegetation and biomass in arid 
environments [1,2]. However, low vegetation cover and significant background effects make optical 
satellite analysis challenging in these regions [3,4]. The majority of dryland studies apply multispectral 
sensors for biomass quantification [3] but more recently, hyperspectral techniques, using hundreds of 
bands, are considered as a more promising approach [2,5–8]. In arid regions, an important advantage of 
hyperspectral data is that narrowband and derivative indices of hyperspectral sensors are less susceptible 
to soil and illumination impacts [5]. Additionally, the high spectral resolution enables the analysis of the 
vegetation-related red-edge transition which is especially useful for quantification of green vegetation at 
low cover values [9]. Besides spectral properties of green vegetation, hyperspectral sensors are also able 
to capture reflective features of other plant tissue, like lignin or cellulose [7,8,10–12], which may be 
important in detecting vegetation in drylands where significant parts of plants consist of structural  
non-photosynthetic tissue [8,11]. In contrast to these encouraging factors, other sources conclude that 
areas with low vegetation cover cannot be reliably analyzed using hyperspectral data [10,13]. Therefore, 
it is still uncertain if space-borne hyperspectral sensors are able to significantly improve vegetation 
detection in extremely arid regions, and so assessments of their practical viability in comparison to 
broadband sensors are required [7]. 

The application of hyperspectral data with its numerous bands is mostly based on prior knowledge of 
the optimal spectral regions for a specific research question [7]. In contrast to that, particular wavelengths 
or indices related to a given variable may not have been tested for vegetation mapping [14], or may vary 
from one study to another as the spectral signal is dependent on a number of external factors [15]. 
Consequently, the biggest challenge for remote sensing based studies, especially in arid environments 
with increased background noise, is the transferability of methods or appropriate spectral indices in time 
and space [3]. 

To address these essential issues of applied hyperspectral research against a background of the 
forthcoming launches of new hyperspectral sensors (e.g., EnMAP), we test the utilization of NASA’s 
Hyperion sensor for dwarf shrub biomass analysis in the Eastern Pamirs of Tajikistan. This area is 
especially suitable for testing the limits of optical remote sensing satellites as vegetation cover is sparse 
(dwarf shrub cover < 20%), large parts of local plants consist of non-photosynthetic structural materials 
and substrate colors are highly variable [4,16]. As multispectral methods proved to be unsuccessful or 
associated with large uncertainties in the research area [4,17], our main goal is to assess if novel 
narrowband indices of the hyperspectral Hyperion sensor improve the performance of dwarf shrub 
biomass detection in this arid environment compared to the commonly used multispectral sensor Landsat 
OLI. Thereby, spectral regions and indices that are sensitive to dwarf shrub amounts should be identified, 
taking the issue of false positive tests in multiple comparison studies into account. Furthermore, 
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transferability of vegetation indices is assessed by comparison of the most important spectral regions for 
dwarf shrub analysis from scenes of different regions in the study area. 

2. Materials and Methods 

2.1. Research Area 

The Eastern Pamirs of Tajikistan are a high mountain desert plateau with mean altitudes between 
3500 and 5500 meters above sea level (Figure 1). The climate is characterized by low temperatures and 
scarce amounts of precipitation (Murghab annual mean 1998–2012: 1 °C, 94 mm, [18]). These natural 
conditions allow the development of dense, green grass vegetation only in areas with sufficient water 
supply (e.g., riparian vegetation in riverbeds, alpine meadows at very high altitudes). All other areas are 
sparsely covered and dominated by dwarf shrub vegetation adapted to water scarcity (Figure 2, [19]). 
These dwarf shrubs play a vital role in a region where the main economic activity is animal husbandry, 
as they serve both as a source of forage and fuel. The energy importance of shrubs is caused by the fact 
that they are the only local plants that develop woody parts, mainly in the root zone. Extensive 
harvesting, whereby the whole plant is dug up, has raised concerns regarding sustainable development 
of the region [19]. Therefore, a comprehensive assessment of the availability of this resource is needed 
as existing remote sensing approaches are still erroneous [4]. 

 

Figure 1. Overview of the research area, analyzed satellite images and field sites. The two 
Hyperion scenes were acquired on 3 August 2012 (western scene) and on 29 July 2013 
(eastern scene), the Landsat OLI scene on 28 July 2013 respectively. DEM source: METI & 
NASA [20]. 
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Figure 2. Photographs of (a) dwarf shrub stand located within the eastern Hyperion scene 
taken in fall 2014, and (b) dwarf shrub stand located within the western Hyperion scene with 
azonal grass vegetation in the background taken in summer 2013. 

2.2. Data 

Selection of satellite images was based on an acquisition date during the peak of the vegetation period 
to maximize the vegetation related reflectance signal in this arid environment [4]. 

2.2.1. Landsat OLI Data 

A multispectral, terrain corrected image (L1T) with 30 m × 30 m spatial resolution was acquired on 
28 July 2013 by the operational land imager (OLI) sensor of NASA’s Landsat 8 satellite. Visual 
inspection and comparison to GPS measurements showed that geo-referencing of the image was accurate 
and no further adjustment was needed. All eight multispectral bands were included in the analysis. 

2.2.2. Hyperion Data 

Two hyperspectral, terrain corrected images (Level 1T) with 30 m × 30 m spatial resolution were 
acquired on 3 August 2012 (western scene) and 29 July 2013 (eastern scene) by the Hyperion sensor of 
NASA’s Earth Observing 1 Satellite (Figure 1). The sensor spans the spectral range from 356–2577 nm 
with a bandwidth of ~10 nm leading to a total of 242 bands. Exclusion of bad bands (not calibrated, 
redundant, noise from atmospheric water vapor, low signal to noise ratio) left 158 bands for the analysis 
(cf. [21]). These are bands 8–57 (427–925 nm), 79–119 (933–1336 nm), 133–164 (1477–1790 nm),  
183–184 (1982–1992 nm) and 188–220 (2032–2355 nm). Despite automatic terrain correction of Hyperion 
images, a spatial error was present in the data. This error was corrected by matching the image pixels with a 
nearest neighbor resampling algorithm to respective Landsat pixels using a second-order polynomial model 
with 19 control points (3 August 2012 RMSEXY: 3.37 m, 29 July 2013 RMSEXY: 5.02 m). The images were 

MANUSCRIPT 2

54



Remote Sens. 2015, 7 4569 
 
not corrected for other effects such as spectral smile or striping as no generally accepted procedure exists 
as well as to preserve the original spectral characteristics [22]. 

2.2.3. Atmospheric Correction 

All images were recalculated to at-sensor radiance with subsequent atmospheric correction using 
ENVI’s state-of-the-art MODTRAN®-based FLAASH® approach. Aqua AIRS Level 3 Daily Standard 
Physical Retrieval product [23] provided information of daily atmospheric water vapor amounts for each 
scene to select the appropriate FLAASH® atmosphere. 

2.2.4. Field Data 

Sixty dwarf shrub stands (30 field sites in each Hyperion image) with homogenous vegetation cover 
and a minimum area of 60 m × 60 m were mapped in summer 2013 and fall 2014 with a handheld GPS 
device (horizontal RMSE ~5 m) using a study design similar to Zandler et al. [4]. Areas were selected 
preferentially to achieve the following objectives: (i) minimum size requirements [24]; (ii) mapping of 
a broad range of dwarf shrub densities; (iii) homogenous spectral properties and to take accessibility of 
field sites into account (cf. [4]). Furthermore, field sites were placed so that steep terrain is avoided to 
prevent potential spatial errors due to inaccurate terrain correction in Hyperion data. Within the stands, 
two subplots with 4 m side length were placed randomly and circumferences of all dwarf shrub 
individuals were measured inside the subplots. These measurements were used to calculate dwarf shrub 
total biomass using an allometric model developed specifically for the research area and the analyzed 
dwarf shrub species [4]. Results were averaged to represent the mean dwarf shrub biomass in kg·ha 1 of 
the stands. The midpoint between the subplots was taken as reference pixel to extract spectral 
information for each stand. A descriptive comparison of site biomass amounts shows that the western 
Hyperion scene is characterized by higher biomass amounts compared to the eastern scene (Figure 3). 

 

Figure 3. Boxplots showing dwarf shrub biomass amounts of sites located in Hyperion 
scenes of August 2012 and July 2013, respectively. Each scene contains 30 field sites. 
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2.3. Spectral Index Computation and Statistical Analysis 

Previous studies show that several spectral regions may be important in detecting different plant 
materials [7,25]. The most prominent is the red-infrared transition to analyze green vegetation [26] but 
many other spectral regions related to non-green, structural plant parts are mentioned as 
well [9,10,13,14,25,27–30]. For multispectral data, a very large number of vegetation indices potentially 
useful in detecting various plant tissues are available, but in the research area, most commonly used 
indices were shown to be unsuitable for biomass prediction [4]. Furthermore, existing hyperspectral 
indices designed to detect features of non-photosynthetic vegetation, may be inapplicable at low cover 
values on various soils [29]. Therefore, since there is no prior knowledge of hyperspectral indices that 
may be particularly suitable for biomass detection in the research area and to fully exploit the potential 
of the numerous Hyperion bands, all possible unique normalized difference indices (NDIs) were 
computed according to the formula: 

(1)

where R is reflectance, arranged in a descending order (2355–427 nm); a is the first wavelength and b is 
the reference wavelengths for field site c. This resulted in a total of 12,403 NDIs using Hyperion bands 
and 28 NDIs using Landsat OLI bands, respectively. These NDIs were grouped in four feature sets 
according to appearance of field sites in the two Hyperion scenes and based on the applied sensor: 
Western field sites (n = 30) within the Hyperion scene from 3 August 2012 (H2012), same field sites 
with Landsat data (LS2013a), eastern field sites (n = 30) within Hyperion scene from 29 July 2013 
(H2013) and same field sites with Landsat data (LS2013b). 

The features were paired in the correlation analysis with mean biomass of field sites as the response 
variable. Pearson’s correlation coefficient R was preferred based on preliminary studies showing a linear 
relationship of biomass and vegetation indices in the research area as well as visual inspection of a part 
of the present data [4]. Hypothesis testing to reject the null hypothesis of zero correlation results in a 
multiple testing problem. For instance, performing 10,000 independent hypothesis tests at the 5% level 
of significance would be expected to yield 500 false rejections if all null hypotheses are true. To address 
this problem, the Benjamini-Hochberg procedure [31], successfully applied by Peña et al. [21] in a 
comparable study, was used to control the false discovery rate (FDR) at a level of <5% and to compute 
adjusted p-value thresholds for each feature set. 

Graphical displays were created for visual identification and comparison of spectral regions that are 
sensitive to dwarf shrub biomass amounts. Denomination of spectral regions follows Thenkabail et al. [12]. 

Similar to the multiple testing problem, the highest correlation coefficients obtained in a large family 
of correlations is not indicative of the predictive performance achieved in a situation where optimal 
indices are not known in advance and optimal index selection is therefore part of the data analysis 
process. To assess the performance of different sensors and feature sets in this situation and account for 
the high dimensionality of the data, we therefore used linear regression models built with a single 
stepwise forward variable selection step using Pearson’s correlation as the selection criterion. Larger 
models were not considered due to the small sample size. Predictive performances obtained for different 
feature sets and study areas were estimated using 100-repeated, 10-fold cross-validation. In this 
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estimation method, the data set is randomly subdivided into 10 disjointed subsets or partitions. One 
partition at a time is used as the test set and the other 90% of the data as the training set in building a 
linear regression using the stepwise method. This procedure is repeated for each of the partitions and for 
100 independent partitionings in total. 

To evaluate feature sets, absolute root mean square error (RMSE), relative RMSE (RMSErel) and 
BIAS were calculated as: 

RMSE= (Yi-Yi)² 
n

n=1
n

(2)

RMSErel=RMSE
Y

×100% (3)

BIAS=1
n

Yi-Yi (4)

where Yi is the measured and Yi the predicted value of case i, Y is the observed mean value and n is the 
number of observations. Mean and standard deviation of these error measures over 100 cross-validation 
repetitions are reported. 

3. Results 

3.1. Visual Comparison of Biomass-Index Correlations 

A broad range of spectral indices were significantly correlated with dwarf shrub biomass in both 
hyperspectral images (Figure 4). Comparison of feature sets showed substantial differences in 
correlation for indices calculated from green to far near infrared (FNIR) regions (500–1350 nm), where 
indices of H2012 resulted in a number of significant correlations in contrast to H2013 with almost no 
significant correlations in this spectral region. Indices derived from spectral bands in the early  
short-wave infrared (ESWIR, 1450–1800 nm) regions were more consistent as both H2012 and H2013 
showed numerous strongly significant correlations in this domain. The closest match of results of the 
two feature sets was in the far short-wave infrared region (FSWIR), whereby strongest correlations of 
dwarf shrub biomass exist with indices of wavelengths 1950–2300 nm and associated reference 
wavelengths from 700 to 1800 nm. 

A comparison of hyperspectral feature sets with multispectral feature sets and the same field sites 
showed similar correlations at related wavelengths. However, correlation coefficients of the 
hyperspectral feature sets were higher in most cases. Large differences were visible between the eastern 
multispectral feature set (LS2013b) with higher correlations in the ESWIR and FSWIR in contrast to the 
western multispectral feature set (LS2013a) with higher correlations in the green to near infrared (NIR) 
spectral regions. 
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Figure 4. Absolute values of Pearson’s correlation coefficients R of biomass with indices 
from field sites of feature sets (a) H2012, (b) LS2013a, (c) H2013, and (d) LS2013b. Black 
lines mark significant values controlled at a FDR < 5%. 

3.2. Modeling Performance of Feature Sets 

The western hyperspectral feature set (H2012) performed best in predicting dwarf shrub biomass 
according to the cross-validated modeling results with an RMSE of 1121 kg·ha 1, a RMSErel of 58% 
and an R2 of 0.54 averaged over all repetitions (Table 1). The associated multispectral feature set 
(LS2013a) showed a higher RMSE of 1528 kg·ha 1 (RMSErel 78%) and lower R² of 0.15. Both models 
showed a relatively small bias. Eastern feature sets generally showed poor modeling performance 
ranging from RMSE values of 937–973 kg·ha 1 (77%–80% RMSErel) whereby the hyperspectral feature 
set (H2013) produced slightly lower values and higher R². Furthermore, model bias was higher for the 
eastern feature sets. 
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Table 1. Cross validated modeling performance of the different feature sets averaged over 
all repetitions. 

 
Modeled Mean RMSE 

(kg·ha 1) 

Modeled Mean 

R2 

Modeled Mean 

Bias (kg·ha 1) 

Modeled Mean 

RMSErel (%) 

Hyperion western sites (H2012) 1121 0.54 23 58 

Hyperion eastern sites (H2013) 937 0.29 69 77 

Landsat OLI western sites (LS2013a) 1528 0.15 11 78 

Landsat OLI eastern sites (LS2013b) 973 0.16 53 80 

3.3. Variable Selection Frequency of Indices 

Stepwise variable selection averaged over all folds and repetitions showed a considerably increased 
occurrence of the best performing NDI compared to other relevant indices over all feature sets (Figure 5). 
The best NDIs of the hyperspectral feature sets showed a strong concentration of FSWIR bands with 
reference wavelengths mostly from the FNIR to the ESWIR. Red–infrared and red edge indices were 
chosen rarely. The three most commonly selected NDIs of the western hyperspectral feature set H2012 
all consisted of bands around 2100 nm with reference bands in the FNIR, whereas the eastern feature set 
H2013 showed higher diversification with bands from 1980–2140 nm and reference bands in the NIR. 
Little conformity was visible between hyperspectral and multispectral feature sets. A comparison of the 
multispectral feature sets showed large differences with an emphasis of the western feature set 
(LS2013a) on the red to infrared region, specifically the index calculated from wavelengths centered at 
865 nm and 655 nm which is identical to the commonly known Normalized Difference Vegetation 
index (NDVI), in contrast to the most frequently selected NDI of the eastern feature set (LS2013b), 
which is composed of FSWIR and FNIR bands. 

 

Figure 5. Cont. 
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Figure 5. Occurrence of the 10 most frequently chosen NDIs according to stepwise variable 
selection from all folds and repetitions (1000 selections) with feature sets (a) H2012, (b) 
H2012, (c) LS2013a and (d) LS2013b. 

4. Discussion 

4.1. Hyperspectral Indices for Dwarf Shrub Biomass Detection 

This is the first study that addresses the sensitivity of hyperspectral narrow bands in the 400–2400 nm 
domain to dwarf shrub biomass in the research area, and to our knowledge, the first to analyze space-
borne hyperspectral biomass detection in regions with cover values well below 20%. We showed that, 
even under these arid conditions, a great number of hyperspectral indices significantly correlate with 
dwarf shrub biomass quantities. Thereby, the green to NIR regions, which are commonly used for 
quantification of green cover, biomass, chlorophyll or leaf area index [7–9,12], were only partly 
correlated with biomass and did not constitute the indices with strongest correlations with the 
hyperspectral feature sets. Although the approximate red edge (700–780 nm), which is stressed as an 
important spectral region at low cover values in other studies [3,9,32], did show significant correlations 
with biomass amounts, it was not among the highest correlating hyperspectral indices. 

However, high correlations commonly occurred in the ESWIR and FSWIR regions with both 
hyperspectral feature sets. These spectral domains are frequently mentioned as indicative of cellulose, 
lignin, wood or shrub material [7,8,10,13,25,27–30,33–37] and are therefore important for the detection 
of structural tissue. Especially the bands around 2020–2220 nm are considered as important for cellulose 
or lignin detection using remote sensing data [13,29,30,36,37] as they are distinctive from soil minerals 
and less affected by atmospheric gasses [37]. These results agree with the observed index selection 
frequencies where the three most important NDIs of H2012 consisted of bands with wavelength centers 
at 2113 nm or 2102 nm, and the second most important NDI of H2013 consisted of the band centered 
at 2143 nm. In previous studies, these bands were used for index computation to map crop residues with 
different reference wavelengths in the FSWIR [29,34,37]. The best performing NDI of H2013 utilized 
the wavelength centered at 1981 nm, a wavelength which may be sensitive to lignin, nitrogen [10,25] or 
plant residues [38]. Similarly, Oldeland et al. [11] state an importance of the SWIR spectral region for 
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dry-matter analysis in an African savanna. Therefore, hyperspectral narrow-band NDIs, capturing 
spectral features of plant residues, lignin and cellulose, may also be instrumental in predicting dwarf 
shrub biomass in arid environments, as major parts of these plants consist of dry, non-green 
plant materials [4]. 

These results indicate that indices especially designed to separately capture the reflectance signal of 
cellulose in senescent vegetation, are suitable for biomass modeling in arid environments as well. 
However, correlation analysis of established indices for mapping senescent vegetation, like the Cellulose 
Absorption Index (CAI) or the Shortwave Infrared Normalized Difference Residue Index (SINDRI) as 
given in Serbin et al. [34], result only in weak significant correlations with CAI (Pearson’s correlation 
coefficients R 0.49 with H2012 and 0.47 with H2013) and no significant correlation of SINDRI with 
total biomass in our study. Similarly, the Normalized Difference Tillage Index (NDTI), whose equivalent 
showed a higher correlation only partly in our study (LS2013b), was not among the most important 
vegetation indices in modeling dwarf shrub biomass in previous research [4]. The reason for the higher 
correlations at the stated wavelengths may therefore not be a result of cellulose and lignin exclusively. 
Besides influence of aforementioned tissue, another reason for the importance of the ESWIR and FSWIR 
may be that green and woody parts of shrubs result in a strong contrast to the soil and so may have a 
strong influence in this spectral domain [13]. Additional research, incorporating field measured spectra 
of different plant materials, soils and various matter combined [13], could enhance knowledge on the 
nature of biomass reflectance properties and main influencing factors. However, regardless of the exact 
mechanisms and relative contributions of photosynthetic and non-photosynthetic tissue that may be the 
subject of additional research, the ESWIR and FSWIR spectral regions are more suitable for biomass 
detection compared to traditional red-infrared NDIs in our study and may supply important additional 
information in remote sensing based vegetation modeling in drylands. 

4.2. Transferability of Spectral Indices Sensitive to Dwarf Shrub Biomass 

An important objective of this study was the validity of spectral regions and indices to predict dwarf 
shrub biomass throughout different areas of the research area. While there was some agreement between 
the hyperspectral feature sets in the FSWIR, spectral regions of many NDIs that correlated strongly with 
dwarf shrub biomass and frequency of index selection differed noticeably between the feature sets. 
Therefore, a spatial generalization of specific narrow-band NDIs is difficult in this environment and 
individual model development is necessary. This is different to Thenkabail et al. [7], who report good 
agreement in optimal hyperspectral wavebands compared to other studies, but is in agreement with 
results obtained by Entcheva-Campbell et al. [22], who state that best performing hyperspectral NDIs 
for predicting ecosystem properties varied across sites. One reason for this lack in transferability of 
specific wavelengths may be the influence of non-constant factors that cannot fully be accounted for in 
correction algorithms [21]. Another reason may be a low signal-to-noise ratio characteristic of many 
Hyperion bands (cf. [27,32]) and apparent striping in the images. However, the broader 2100 nm region 
seems approximately transferable across hyperspectral sensors in this study, which is encouraging for 
future studies and indicates that an avoidance of indices based on too narrow bands may improve 
regional vegetation analysis [7]. 
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The comparison of correlations and index selection frequencies of multispectral feature sets revealed 
a poor agreement in NDIs even though all field sites were situated in the same scene. An important 
reason may be the sensitivity of common broadband vegetation indices to background effects [39], like 
soil color, which emphasizes the importance of correction algorithms to account for these issues [4]. For 
example, NDVI values are especially sensitive to external interference at low vegetation cover 
values [40]. This may explain the importance of NDVI in the western data set with denser vegetation 
compared to its insignificance in the eastern data set with lower dwarf shrub cover. Another reason may 
be the diverse soil color prevalent in both feature sets, which is increasingly black in the eastern scene 
compared to a bright, brown-beige background in the western scene (Figure 2). In summary, the spatial 
transferability of spectral NDIs is challenging in the research area and this issue has to be considered in 
hyperspectral biomass modeling in drylands. These findings show that repeated variable assessment and 
model building is necessary in different regions and reveal the importance of knowledge discovery 
algorithms for advanced analysis procedures to handle huge hyperspectral datasets. However, the 
conformity of significant correlations comparing hyperspectral to multispectral feature sets with the 
same field sites suggests a high agreement at similar wavelengths between both sensors (cf. [41]). 

4.3. Modeling Performance of Sensors 

The hyperspectral Hyperion sensor showed increased performance in dwarf shrub biomass modeling 
compared to the Landsat OLI sensor. This has been previously shown by results obtained in different 
regions and from varying plant species [7,12,33,42] and suggests a large potential of hyperspectral 
sensors for vegetation analysis in arid environments as well. Furthermore, these results indicate that 
biomass quantification is possible even under the challenging conditions (noisy data, spectral variability) 
of applied, space-borne hyperspectral remote sensing in drylands within certain limits. This study 
supports the findings of Okin et al. [15], who showed that hyperspectral vegetation cover quantification 
in an arid region is possible under a best case scenario with a minimization of disturbing factors. 
However, in the eastern scene, which is characterized by lower biomass values, the performance of the 
hyperspectral sensor was only slightly better than the multispectral sensor. This demonstrates the 
limitations of hyperspectral-based vegetation analysis when cover values fall below a certain threshold. 
This is similar to results of Asner and Heidebrecht [32], who assert that accurate Hyperion-based 
vegetation quantification is only possible with denser vegetation. Finally, although the hyperspectral 
sensor outperformed the multispectral sensor in this study, results of biomass prediction are connected 
to major uncertainties and errors as well, which can be ascribed to the natural conditions of arid 
environments [15]. Nevertheless, extended modeling approaches, incorporating additional variables like 
topography [43], texture [44], soil and color-adjusted vegetation indices [40] as shown by Zandler et al. [4], 
using operational, widely available, space-borne hyperspectral data, can significantly reduce such errors 
in future applications. Furthermore, future research approaches may include variables particularly 
sensitive to photosynthetic vegetation, non-photosynthetic vegetation or both, in a multi variable-model 
after analyzing their relative contribution to the mixed biomass signal. Therefore, as is also expected by 
Asner and Green [2], this study suggests great potential for the upcoming products of new sensors like 
EnMAP or HyspIRI for future remote sensing based research of the world’s drylands. 
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5. Conclusions 

This study showed that hyperspectral Hyperion data provides increased performance in predicting 
biomass in an arid environment compared to the multispectral sensor Landsat OLI. The reason is based 
on the higher spectral resolution, especially in the FSWIR, as highest correlations and best performing 
indices are situated in this region with the hyperspectral feature sets, whereby spectral regions 
intersecting with multispectral bands show similar correlations. The results indicate that sensors 
capturing spectral features of both green and woody material, which may be most distinctive in the 
FSWIR, are more suitable for biomass quantification in drylands that are characterized by plants 
consisting of non-photosynthetic parts to a large extent. Our research also revealed that spatial 
transferability of specific spectral indices is limited or not feasible, owing to the strong influence of 
background effects, underlining the importance of repeated model building and variable exploration in 
areas with different environmental conditions. Finally, substantial modeling errors were still present in 
all hyperspectral feature sets, which demonstrates the limitations of remote sensing based approaches 
and emphasizes the need for additional variables, such as texture or topography, for vegetation 
quantification in arid environments. However, the partly considerable modeling improvement with the 
hyperspectral sensor compared to the modern multispectral sensor in this arid setting indicates that 
upcoming, space-borne, operational hyperspectral sensors may enhance satellite-based vegetation 
analysis in drylands in the near future. 
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Summary: Energy supply is a key issue in isolated high mountain regions like the Eastern Pamirs of  Tajikistan. This study 
uses an interdisciplinary approach to analyze the energy system of  Alichur, an exemplary settlement in the region. Thereby, 
the local energy mix is evaluated, as well as the current and possible future supply of  the two main resources used: Dwarf  
shrubs and animal manure. Finally, based on the energy system analysis, a locally adapted energy poverty index is developed. 
In contrast to assumptions made in literature on the topic, we found that currently only 15% of  Alichur’s inhabitants are 
energy poor, 25% are endangered by energy poverty and 60% are energy secure. However, with decreasing access to dwarf  
shrubs in the future, the share of  energy poor households and those endangered by energy poverty may increase to more 
than 70%, leaving less than 30% of  Alichur’s households energy secure. In contrast to existing energy poverty indices, the 
adapted energy poverty index presented here considers social and environmental interrelationships of  the case study region. 
It is therefore well suited for describing the energy situation of  Alichur’s population.

Zusammenfassung: Die Energieversorgung spielt eine bedeutende Rolle in isolierten Hochgebirgsregionen wie dem Ost-
pamir Tadschikistans. Die vorgestellte Studie nutzt einen interdisziplinären Ansatz, um das Energiesystem der Ortschaft Ali-
chur stellvertretend für die Energieversorgung im Ostpamir zu untersuchen. Dabei werden sowohl der lokale Energiemix, 
als auch die gegenwärtige and zukünftige Verfügbarkeit von Zwergsträuchern und Dung als meistgenutzte Energieträger 
abgeschätzt. Schließlich wird auf  Basis der Energiesystemanalyse ein an die lokalen Bedingungen angepasster Energiearmut-
sindex entwickelt. Im Gegensatz zu gängigen Meinungen in der Literatur, wurde mit Hilfe des Energiearmutsindexes ermit-
telt, dass gegenwärtig nur 15% der Einwohner von Alichur als energiearm, 25% als von Energiearmut gefährdet und 60% als 
energiesicher gelten. Mit einer zukünftig verringerten Verfügbarkeit von Zwergsträuchern würde der Anteil an energiearmen 
und von Energiearmut gefährdeten Haushalten jedoch auf  über 70% ansteigen, wobei weniger als 30% der Haushalte in 
Alichur als energiesicher gelten würden. Im Gegensatz zu bestehenden Energiearmutsindices berücksichtigt der vorgestellte 
Ansatz soziale und naturräumliche Zusammenhänge in der Fallstudienregion. Er ist daher geeignet, die Energiesituation in 
Alichur adäquat zu beschreiben.

Keywords: Human-nature interaction, Central Asia, mountainous regions, energy poverty, biomass fuels, rural develop-
ment, degradation

1	 Introduction

Within the debate on global development, pri-
ority topics such as climate change and sustainable 
energy use have played a crucial role on the inter-
national agenda (cf. Spalding-Fecher et al. 2005). 
The relevance of the current debate was highlighted 
by the United Nations (UN) pronouncing 2012 as 
the year of “Sustainable Energy for All”. Poverty 
alleviation, the improvement of environmental con-
ditions through reliable access to energy and an in-
crease of renewable energies are important pillars of 
the UN-resolution, which addresses more than 1.4 
billion people who are lacking modern energy sup-
ply (United Nations 2011). In this context, available 
research has been focusing on the topics of energy 

poverty and energy access. However, the analysis 
of energy poverty remains a complex issue and no 
generally accepted approach exists. Nussbaumer et 
al. (2011) differentiate between single indicators that 
show one dimension of a phenomenon or a combi-
nation of single indicators assessed within a frame-
work (such as the Millennium Development Goals 
programme) and composite indicators that aim to 
investigate more complex, multidimensional issues. 
One example of a single indicator is the share of 
household investments for energy, e.g. if more than 
10% of the income is spent on energy, the house-
hold is considered energy poor (Barnes et al. 2011). 
Srivastava et al. (2012) make use of the energy re-
quirements for cooking as an energy poverty bench-
mark. Another frequently found indicator for ener-
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gy poverty is the access to modern energy carriers 
like electricity or gas (Pachauri and Spreng 2011). 
Although these may be important factors for energy 
poverty, they may not be solely decisive (Pereira et 
al. 2010; Srivastava et al. 2012). The international 
energy agency uses a set of indicators, such as the 
share of modern fuels in the energy mix and per 
capita commercial energy/electricity consumption 
(IEA 2010). Mirza and Szirmai (2010) use a more 
complex index that connects energy inconveniences 
to the shortfall in meeting predefined basic energy 
amounts. The Multidimensional Energy Poverty 
Index (MEPI) – a composite indicator showing the 
deprivation of energy – is presented in Nussbaumer 
et al. (2011). Thereby, the authors use a set of six in-
dicators to quantify energy poverty: modern cook-
ing fuel, indoor pollution, electricity access, owner-
ship of electric household appliances, ownership of 
electric entertainment appliances and telecommu-
nication means. Groh (2014) links energy poverty 
to dependency on biomass, access to credits, energy 
security, energy quality and degree of remoteness. 
Obviously, these different approaches result in very 
diverse outcomes regarding the energy poverty situ-
ation. This indicates that, even though these energy 
poverty indices might produce valuable results for 
the regions assessed, they cannot be employed uni-
versally for other regions with varying living con-
ditions (cf. Barnes et al. 2011; Katsoulakos 2011; 
Pereira et al. 2010; Srivastava et al. 2012).

As combating energy poverty in mountain re-
gions is of paramount importance (Katsoulakos 
2011), the associated analysis and identification of 
central elements involved is not trivial. The Eastern 
Pamirs of Tajikistan are a prime example of a moun-
tain region in which energy poverty issues are cru-
cial for sustainable development. Droux and Hoeck 
(2004) mention a “severe energy crisis” in the region 
due to a lack of energy access. Furthermore, Förster 
et al. (2011) highlight that energy supply plays a ma-
jor role for the reduction of vegetation degradation 
and poverty in the Pamir-Alai Mountains. More 
recently, Kraudzun et al. (2014) investigated the 
status of dwarf shrubs (Krascheninnikovia ceratoides, 
Artemisia spec.), which are strongly linked to energy 
access as a central thermal energy source in the area, 
and concluded that thermal energy use and supply 
are highly diversified. Kraudzun (2014) emphasizes 
the role and increasing importance of animal ma-
nure as another locally available energy carrier and 
provides an overview of the dynamic energy trans-
formation in the region. All these studies analyze 
aspects of energy poverty based either on a limited 

database or offer only confined insights into the en-
ergy system of the Eastern Pamirs. Reliable energy 
consumption and provision figures are still missing, 
despite their relevance for improving understanding 
of the current and future energy situation in the re-
gion. Additionally, a comprehensive, in-depth meth-
odology that contrasts energy demand and supply 
based on the background of local socio-economic 
conditions is also lacking. However, the energy situ-
ation of the Eastern Pamirs varies with diverse local 
conditions in the region’s villages and cannot be as-
sessed with the described existing measures of ener-
gy poverty on a larger scale. Therefore, an adapted 
energy poverty index based on an interdisciplinary 
survey may be more suitable.

In order to meet this objective, we analyze the 
energy system of the medium sized Eastern Pamir 
village of Alichur. Based on a profound dataset, we 
develop a methodology to specify the local energy 
situation in the case study village. The approach in-
tends to bridge the gap between generalized quan-
titative energy poverty indices on the one hand, 
and specific qualitative surveys on the other hand. 
Although all or nearly all households of Alichur are 
expected to be classified as energy poor using exist-
ing single indicator energy poverty indices, there is 
strong evidence that a more detailed consideration of 
the local energy consumption patterns yields a more 
diversified picture (Kraudzun 2014). Furthermore, 
despite very pessimistic projections regarding avail-
able energy ten years ago (Droux and Hoeck 2004), 
the present energy situation in the Eastern Pamirs 
appears relatively stable. Therefore, a locally adapt-
ed energy poverty index is considered to be more 
suitable than existing methods to clarify specific 
questions regarding the current and possible future 
energy security in the case study region and is used 
to evaluate the following two hypotheses:

1. The greatest share of households in the vil-
lage can supply themselves with enough energy to 
satisfy their current energy demand and even pos-
sess sufficient resources to cope with shocks to the 
social or energy system. 

Especially dwarf shrubs and animal manure 
currently provide relevant shares of the local energy 
mix at low costs (cf. Kraudzun 2014) and a consid-
erable number of publications (i.e. Achmadov et al.; 
2006; Breckle and Wucherer 2006; Hoeck et al. 
2007) highlight the importance of dwarf shrubs for 
the current energy supply of the Eastern Pamirs and 
at the same time report alarming figures about their 
degradation. This leads to the second hypothesis of 
this study:
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2. If local dwarf shrub stands are being depleted, 
the energy security of the local inhabitants is likely to 
worsen significantly in the future.

By analyzing an energy system exemplary for the 
Eastern Pamirs, this study aims at clarifying wheth-
er or not the energy crisis described in literature is 
based on scientific local evidence.

2 	 Study area

This paper analyses the energy system of Alichur, 
a village located in the autonomous province Gorno-
Badachschanskaja Avtonomnaja Oblast (GBAO) of 
the Central Asian Republic of Tajikistan. GBAO cov-
ers the whole Tajik part of the Pamir Mountains. It 
consists of seven administrative districts (rajons) 
and one urban region. Alichur is located in the rajon 
Murghab whose administrative center is the city of 
Murghab. The rajon of Murghab is further subdivided 
into six departments ( jamoats). The village of Alichur 
is the center of the jamoat Alichur, which also includes 
the villages of Bash Gumböz and Bulunkul and their 
surroundings (Fig. 1). Alichur has 1,295 inhabitants 
(January 2013), consisting of 314 families that are dis-

tributed between 210 separate households in the vil-
lage and some further households (i.e. pasture camps 
and road maintenance stations) in the near surround-
ings. Seventy-six percent of the population are ethnic 
Kyrgyz and 24% are Pamiri (Shia Ismaili Mountain 
Tajiks, Statdat. Jamoat Alichur 2013).

According to our household survey data, the av-
erage income of people in Alichur is 155 USD per 
month, including official salaries, pensions, formal 
seasonal work and self-employed businesses. The 
state is the main source of monetary income: 44% 
of formal incomes are official salaries of which 47% 
are pensions. Apart from monetary income, livestock 
as transformable financial capital plays a great role 
for sustaining livelihoods in the Eastern Pamirs (cf. 
Kreczi 2011). The average livestock per household 
in Alichur is 23.1 units of small livestock (goat and 
sheep) and 5.5 units of big livestock (yak and cow) ac-
cording to the 2013 household interviews. The Pamir 
Highway (M41) which passes through the village 
has played a crucial role in the development of the 
village. This main road, connecting the centers and 
markets of Khorog in the Western Pamirs and Osh 
in Kyrgyzstan, is still an important feature for liveli-
hoods in Alichur and influences utilization patterns 

Fig. 1: Location of  the study area. Area is delimited according to the availability of  satellite data used for the biomass model
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of local resources, which have to be transported from 
the periphery to the settlement. 

The climate of this high mountain plateau can be 
characterized as cold and dry (Bulunkul annual means 
1999–2012: -6.1 °C, 95 mm, Tajik Met Service 2013). 
Scarce dwarf shrub dominated vegetation adapted to 
this harsh environment is characteristic for all areas 
except azonal vegetation sites in riverbeds and high 
altitudes with good water provision. Due to the ab-
sence of trees, dwarf shrubs (Krascheninnikovia ceratoides, 
Artemisia spec.) are the only locally available woody bio-
mass. Thereby, the largest share of the plant’s biomass 
is located underground in the root zone. We will refer 
to these dwarf shrubs as teresken (Krascheninnikovia cera-
toides) and shyvak (Artemisia spec.) in this study, as these 
are their locally known Kyrgyz names. 

3	 Methods

This study uses an interdisciplinary approach, 
incorporating qualitative and quantitative, geo-
ecological and social data, to investigate the com-

plex phenomenon and the various forms of energy 
poverty and follows two main methodological ap-
proaches: The analysis of the local energy system 
of Alichur and the development of a locally adapted 
energy poverty index. On the energy consumption 
side, household interviews combined with a thermal 
analysis of commonly utilized energy carriers yield 
quantitative data on the current energy-mix. On the 
supply side, the capacity of the local energy carriers – 
animal manure and dwarf shrub biomass –are investigated 
in order to identify possible future developments of 
the energy system. A map of all available harvest-
ing areas allows a spatial assessment of the current 
and anticipated future biomass supply. Following 
the analysis of the local energy system, a regionally 
adapted energy poverty index is derived (Fig. 2). For 
the development of this localized energy poverty in-
dex, qualitative and quantitative social data was used 
in different steps. Environmental data and its inter-
pretation are incorporated again when projecting fu-
ture scenarios. The index will be used to assess the 
present energy poverty situation at the local level and 
to identify possible future trends.

Manure 
availability

Locally adapted 
Energy poverty 

index

Dwarf shrub 
availability

Purchasing 
power

Dwarf shrub 
biomass model

Field biomass/ 
satellite data

Biomass availa-
bility factors

Current energy 
demand

Livestock 
numbers

Manure pro-
duction rates

Workforce 
available

Formal income

Informal 
income

Energy carrier 
prices

Thermal energy 
carrier analysis

Energy carrier 
consumption

Data collection Data aggregation Energy poverty factors

Fig. 2: Steps to a locally adapted energy poverty index for Alichur
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3.1	 Analysis of  the local energy system

3.1.1 Household interviews and spatial allocation

In March 2013, a comprehensive survey on the 
2012 energy utilization was conducted among pri-
vate households of Alichur. On the one hand, data 
related to demand, acquisition and consumption of 
local energy and, on the other hand, information 
about the demographic structure, living conditions 
and livelihood strategies of households was collect-
ed. Additionally, the spatial characteristics of local 
dwarf shrub biomass harvesting were analyzed. In 
total, 210 households were counted and visited in 
the village. 119 households were available for the 
interview. Following a test phase, which aimed to 
improve the questionnaire regarding structure and 
formulation of questions, six local assistants con-
ducted the interviews in pairs. The interview part-
ners represented both Kirghiz and Pamirian ethnic 
groups respectively. In doing so, the willingness 
to share information among the interviewees was 
increased and translation errors were minimized. 
Asked for amounts of energy carriers used, inter-
viewees typically answered in units of purchase or 
acquisition. Specifications for masses of coal were, 
without exception, made in metric units such as 
tons or kilogram. Yet, locally generated energy car-
riers were mainly specified in regional units such 
as bundles of dwarf shrubs or different types of 
lorry loads of animal manure and dwarf shrubs (cf. 
Mislimshoeva et al. 2014). In order to convert these 
regional units to metric units, 57 samples of dwarf 
shrub bundles were measured. The lorries’ cargo 
capacity was determined by measuring the bed area 
as well as the bed height or the height of additional 
installations. In addition, two cargo density samples 
were each recorded for kuik and for dwarf shrubs. 
Derived conversion factors are valid for the case 
study of Alichur and cannot directly be transferred 
to other villages of the Eastern Pamirs as harvest-
ing habits vary significantly in the region. More 
details on the derivation of the conversion factors 
are presented in Hohberg (submitted). To improve 
the comparability between different types of en-
ergy carriers, thermic analysis of one representative 
sample of teresken, shyvak, kuik and tezek was carried 
out at the Institute of Combustion and Power Plant 
Technology, University of Stuttgart (IFK 2013). 
In addition to the quantitative data set, qualita-
tive household interviews were conducted in 2013. 
Information concerning social aspects influencing 
utilization patterns, organization and acquisition 

of local fuels, as well as the demand for resources 
was collected in semi-structured, biographical and 
guided expert interviews. Qualitative data served 
not only to complement and triangulate quantita-
tive data, but to gain an in-depth understanding 
of the local energy system and living conditions, 
which evoke complex coping mechanisms of 
households. Furthermore, qualitative data played 
a crucial role for the deduction of the different 
categories that the energy poverty index is based 
on. The values for classification within the differ-
ent categories, as well as class limits, are based on 
quantitative data.

To allocate biomass amounts mentioned in 
the interviews, a classification of the territory into 
landscape units was necessary. Borders used for 
this classification process were pasture areas and 
landmarks such as ridges, rivers or roads. An itera-
tive process was employed using a digital elevation 
model (DEM, METI and NASA 2009), information 
of the local community with subsequent validation 
and a geographic information system (GIS) (Fig. 1).

3.1.2 Manure production and dwarf  shrub bio-
mass availability and access

Based on data from the 2013 household inter-
views and the local veterinary (Ismanov 2013), live-
stock numbers assigned to the village of Alichur 
were estimated. Daily manure production figures of 
relevant livestock species were estimated through 
the field survey and expert interviews and validat-
ed by literature data (Breu 2006; Chambers 2001; 
Kadian 2002). Finally, kuik production figures were 
estimated by multiplying the total manure produc-
tion of a livestock species by the share of time it 
spends in a shed. Tezek production numbers equal 
the total manure production of big livestock sub-
tracted by its kuik production.

The methodology to assess dwarf shrub biomass 
availability incorporates the application of a spa-
tial biomass model and the definition of scenarios 
considering realistic limiting factors for calculation 
of available biomass. The development of the spa-
tial biomass model was performed using RapidEye 
(RapidEye AG 2009), Landsat OLI (USGS 2013) 
and ASTER DEM (METI and NASA 2009) satellite 
images. The methods, data and the best performing 
model of Zandler et al. (2015) were applied, but 
modeling was restricted to the 20 highest ranking 
remote sensing variables according to the impor-
tance assessment therein. As empirical models are 
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always connected to modeling errors, respective re-
strictions were introduced to avoid overly optimis-
tic biomass predictions. Zandler et al. (2015) state 
that better performing biomass models showed 
an RMSE of approximately 1,000 kg/ha under the 
given research conditions. Therefore, this value was 
subtracted from all predicted biomass values in this 
study to provide a conservative assessment of bio-
mass availability. Resulting negative values were set 
to zero. To take aforementioned realistic limiting 
factors related to dwarf shrub harvest into account, 
field observations and interviews were used to de-
velop different scenarios. Generally, two different 
dwarf shrub harvesting practices can be distin-
guished: harvesting on foot or donkey, referred to 
as individual harvest herein, or motorized harvest in pairs 
or groups using available vehicles. Furthermore, 
harvesters only excavate dwarf shrubs in regions 
where a certain minimum biomass amount is avail-
able. Areas with biomass densities below certain 
thresholds are usually not harvested even though 
they are easily accessible and frequently found near 
villages. Therefore, in Scenario 1, harvest takes 
place only in areas with more than 500 kg/ha and 
the biomass was set to zero in all areas below this 
level. In Scenario 2, the harvesting threshold was 
raised to 1,000 kg/ha to allow for a natural variabil-
ity of worthwhile harvesting area selection. These 
thresholds are especially important when it comes 
to modeling individual harvest by foot or donkey. 
Individual harvest is restricted to a walking distance 
of 90 minutes around the village of Alichur, a value 
above which travel times do not allow for a daily 
return to Alichur from the harvest area. Due to the 
comparably high transportation effort and cost and 
a generally larger number of involved harvesters, mo-
torized harvest is only conducted in areas with higher 
quantities of biomass available. Therefore, two ad-
ditional scenarios with higher thresholds, one with 
a 1,500 kg/ha (Scenario 3) and another with a 2,000 
kg/ha (Scenario 4), were calculated.

Besides availability, accessibility to dwarf shrub 
biomass is instrumental for its utilization. To ac-
cess more remote dwarf shrub areas for harvesting, 
former Soviet lorries, remnants of Soviet times, are 
used in Alichur. The model GAZ-66, which is an all-
terrain Soviet military lorry that can drive on incli-
nations of up to 30° when unloaded (NTIS 1973), is 
the lorry most frequently utilized for these purpos-
es. However, when used for harvesting, these lorries 
are loaded up to two meters high with dwarf shrubs 
and the maximum passable inclination is lower so 
that a maximum drivable inclination of 20° is as-

sumed. A DEM (METI and NASA 2009) was em-
ployed to identify areas with inclinations lower than 
or equal to 20° in the study region. Additionally, a 
shapefile of the local road network in Alichur dis-
trict and one of all water bodies in the region were 
used for evaluation of dwarf shrub accessibility. 
All areas that are not covered by a water body and 
connected to the village of Alichur by road or are 
accessible from Alichur by passing only areas with 
inclinations lower than or equal to 20° are evaluated 
as accessible by motorized vehicle. In total, 85,700 
ha are accessible by motorized vehicle in the project 
region.

3.2	 Local energy poverty index

Animal manure and dwarf shrub biomass are 
identified as crucial for the energy supply of house-
holds in the case study village of Alichur. Therefore, 
a household’s livestock ownership (access to manure) 
and available workforce (harvest of dwarf shrubs) 
are key factors determining energy security. As a 
matter of course, monetary income can compensate 
both of these two factors. In order to assess the en-
ergy situation of the households, the availability of 
the aforementioned factors of workforce, livestock 
possession and monetary income is quantified on 
the household level into the three categories of suf-
ficient quantity, medium quantity and low quantity. In this 
context, sufficient quantity corresponds to a factor’s 
capability to provide 100% or more, medium quantity 
to provide 50% to less than 100% and low quantity to 
provide less than 50% of the annual average energy 
demand. Livestock ownership, being a substantial 
part of a household ś tied up financial capital in the 
Eastern Pamirs (Kreczi 2011), is not taken into ac-
count within the calculation of monetary income. 
In order to consider a household’s situation as en-
ergy secure, at least one of the described key factors 
must be available at a sufficient quantity and a second 
factor at a medium quantity. An energy secure house-
hold is able to satisfy its total energy demand and 
can cope with shocks, trends and seasonal changes. 
Households that have one of the factors at sufficient 
quantity or two factors at medium quantities are consid-
ered to be endangered by energy poverty. Though 
these households are currently able to satisfy their 
energy demand, they are vulnerable to changes in 
the livelihood system. Finally, energy poor house-
holds cannot supply themselves with sufficient en-
ergy carriers, are relying on external help and/or 
complex bundles of survival strategies.
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4	 Results and discussion

4.	 The local energy system of  Alichur

With five out of the 119 interviewed households 
giving contradictory statements about their energy 
consumption, 114 valid datasets resulted from the 
survey (54% of all households). The masses of re-
source consumption resulting from these household 
interviews are depicted in table 1 together with heat 
of combustion figures resulting from thermic analy-
sis (IFK 2013).

We found that households in Alichur consumed 
on average 161.7 gigajoules (GJ) of energy in 2012 
(Fig. 3). Ninety point six percent of this consump-
tion is provided by the local resources of manure, 
dwarf shrubs and – to a very small extent – by de-
centralized solar power (households having little so-
lar panels on their roofs). The energy utilized from 
manure amounts to 84.7 GJ per year and makes 
up around 52.4% of the total energy consumed 
per household. Both kuik and tezek were used by 
the inhabitants of Alichur. Yet, kuik was reported 
to be responsible for energy generation of 78.7 GJ 
per household (48.7% of the total energy mix), 
while tezek only provided 6.0 GJ (3.7% of the total 
energy mix). On average 6,047 kg kuik and 396 kg 
tezek were used per household. Sixty-one point one 
Gigajoule per household was generated by burning 
dwarf shrubs, which translates into 37.9% of the en-
ergy mix and is equivalent to 3,367 kg dwarf shrubs. 
People reported that they generally had no prefer-
ences for teresken or shyvak and used either one de-
pending on which was more easily accessible. Solar 
panels deliver no more than 0.6 GJ per household 
and year, about 0.4% of the total energy used. In 
2012, 9.3% of the total energy mix (15.1 GJ or 655 
kg) was provided by coal, the only external energy 
carrier imported to Alichur for room heating.

These findings show some similarities to Hoeck 
et al. (2007) and Mislimshoeva et al. (2014) who 
studied energy consumption in settlements of the 
Western Pamirs. They indicate that the largest share 
of energy consumed was met by local biomass. Yet, 
energy demand from biomass was mainly satisfied 
by dwarf shrubs according to Hoeck et al. (2007) 
and by animal manure according to Mislimshoeva 
et al. (2014). This is different to our work where the 
energy carriers of animal manure and dwarf shrubs 
account for approximately equal shares of the energy 
mix, underlining strong regional differences in en-
ergy utilization (cf. Kraudzun 2014). Our study is 
the first to analyze dwarf shrub consumption on a 
more extensive database in this region. With a total 
consumption of 3.4 t of dwarf shrubs per household 
and year, our findings range between the 1.2 t given 
by Wiedemann et al. (2012) and 7.9 t given by Droux 
and Hoeck (2004). These studies derived their fig-
ures from a much smaller sample. The resulting to-
tal energy consumption of 161.7 GJ per household 
and year with an average of 5.06 persons per house-
hold is rather high as compared to the Tajik aver-
age, which is 18.1 GJ per person (91.6 GJ per 5.06 
persons) (Breu and Hurni 2003). Regional refer-
ences state figures between 69 GJ and 140 GJ in the 
Western Pamirs (Hoeck et al. 2007; Mislimshoeva et 
al. 2014). As energy demand may increase due to bad 
energy infrastructure (Hoeck et al. 2007), increasing 
elevation (Mislimshoeva et al. 2014) and lacking ac-
cess to energy grids, our results are within a plausible 
range.

Keeping the overall energy mix of Alichur in 
mind, the focus of this research is on the most im-
portant local energy carriers of manure and dwarf 
shrubs. We estimated the total livestock numbers 
of Alichur at 1,500 yaks, 200 cows, 2,000 goats and 
2,900 sheep. Milk-yaks, young yaks and few bulls are 
kept in the shed during night time (Vanselow 2011). 

Energy Carrier Teresken Shyvak Kuik Tezek Coal

Average amount consumed per 
year and HH 1,343 kg 2,024 kg 6,047 kg 396 kg 655 kg

Standard deviation of  the 
amount consumed per year and 
HH

1,798 kg 1,532 kg 2,786 kg 817 kg 615 kg

Heat of  combustion [MJ/kg] 17.8 18.5 13.0 15.2 23.0a

Tab. 1: Average resource consumption figures of Alichur and heat of combustion of selected energy carriers used in Ali-
chur (Source: IFK 2013)

a estimated based on a calorific value of  6.40 kWh/kg (Rea  2012)
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The remaining yaks, approximately 50%, are left to 
graze day and night. Small livestock as well as cows 
are kept in sheds during the night in summer and 
winter. Therefore, it is assumed that 25% of the yak 
droppings and 50% of sheep, goat and cow drop-
pings accumulate in sheds and are the source of kuik. 
Due to the droppings’ consistency, only yak and cow 
manure can be collected from the pastures for use as 
tezek. Assuming all can be collected, these account 
for 75% of the produced yak manure and 50%of the 
cow manure. Estimated figures consider a moisture 
content of 7% for kuik and tezek. This value was eval-
uated for air dried kuik and tezek from Alichur by 
IFK (2013). Table 2 gives tezek and kuik production 
figures per head and year. Multiplying the livestock 
figures derived with the manure production figures 
we calculated a potential kuik production capacity of 
889 t per year and a potential tezek production capac-
ity of 1,558 t per year in the vicinity of Alichur.

With a calculated kuik production capacity of 
only 889 t and an estimated total kuik consumption 
of 1,260 t, clearly all available kuik was utilized in 
2012 in Alichur and additional imports from neigh-
boring areas were required. In contrast, only around 
80 t of tezek were used by the households of Alichur, 
where the production of tezek during this year was 
around 1,558 t. This amounts to only 5% of the theo-
retically available tezek.

In total, 789 t of dwarf shrubs were harvested 
in the vicinity of Alichur in 2012. Out of these, 82 
t were exported from the region, 707 t were used by 
the inhabitants of Alichur themselves. Dwarf shrub 
harvesting activities in 27 landscape units were con-
ducted (Fig. 4). This includes 76% of all landscape 
units bordering the Pamir Highway (19 out of 25) 
and 44% of all identified landscape units (27 out of 61). 
Depending on the selection of the harvesting sites, 
different means of transport are required: Individual 
harvest is practiced within walking distance from the 
village center. Hohberg (submitted) derives a cost 
distance raster for individual harvest around Alichur, 
which is based on empirical field data. He considers 
a walking distance of 90 minutes around Alichur as 

a maximum range for individual harvest. The result-
ing area for individual harvest is used in this work 
(red outline in Fig. 4). Motorized harvest takes place 
preferably along the Pamir Highway at medium dis-
tances of around 25 km away from Alichur and to a 
smaller extent also in areas not accessible from the 
Pamir Highway.

Regarding biomass availability, cross validated 
error measures of the spatial biomass model result-
ed in a bias of 47 kg/ha, a RMSE of 910 kg/ha and 
a relative RMSE of 54%, showing a similar perfor-
mance compared to remote sensing based biomass 
quantification studies in other regions (Zandler et 
al. 2015). Predicted areal mean biomass of the con-
servative model including the whole area (Fig.  4) 
was 921 kg/ha. Spatially, lowest amounts were 
predicted at summit areas, in the Alichur Valley 
at lower elevations, in the vicinity of Alichur and 
near main roads. Highest amounts were predicted 
for slopes of northerly and southerly reaching side 
valleys with the maxima at valley ends at higher al-
titudes. Total predicted dwarf shrub biomass for all 
landscape units ranged from 153,522 t (Scenario 2) to 
164,503 t (Scenario 1). Reachable biomass for indi-
vidual harvest by foot or donkey varied from 8,343 
t (Scenario 2) to 10,080 t (Scenario 1). Regarding 
accessible biomass by vehicle (motorized harvest), 
the amount of dwarf shrub ranged from 63,821 t 
(Scenario 4) to 75,479 t (Scenario 3). These results 
indicate that, although accessibility is an important 
issue, biomass availability is still high in the sur-
roundings of Alichur, which contradicts the find-
ings of Droux and Hoeck (2004), who provide 
evidence of an alarming energy situation due to the 
rapid decline of dwarf shrub vegetation in the re-
gion based on biomass estimates. However, this is 
the first study to analyze biomass availability in this 
region based on empirical data, in contrast to exist-
ing rough estimates. Furthermore, our findings are 
supported by the more recent work of Kraudzun 
et al. (2014), Kraudzun (2014) and Vanselow and 
Samimi (2014), who state that the situation is more 
complex and that intact dwarf shrub vegetation 
may commonly exist side by side with degraded 
areas. In accordance with this, our spatial distri-
bution of modeled biomass (Fig. 4) shows no or 
low biomass amounts near the Pamir Highway in 
comparably easily accessible regions, but high bi-
omass quantities at a certain distance from these 
main routes, but still in the vicinity of Alichur. All 
these figures only depict the present day available 
biomass amounts that could be exploited under the 
given assumptions, without considering sustainable 
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Fig. 3: Average primary energy consumption of  Alichur 
households in 2012
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development or other mechanisms that may influ-
ence dwarf shrub utilization. To assess long-term 
impacts of harvesting on biomass and therefore en-
ergy availability, figures on regeneration of dwarf 
shrubs are very important. As these plants are ex-
tremely slow growing (Walter and Breckle 1986), 
comprehensive studies on this issue were not pos-
sible during our work, although observations of a 
few disturbed areas (n=5) indicate that regeneration 
takes place at a rate of about 14–39 kg/ha*a. With 
dwarf shrubs growth figures of 20–30 kg/ha*a 
(Walter and Breckle 1986), 70 kg/ha*a (Clemens 
2001), 30‑70 kg/ha*a (max. 150 kg/ha*a) (Breckle 
and Wucherer 2006) in the literature, our meas-
urements appear rather conservative.

A comparison of the harvested and modeled 
biomass on the subject of accessibility shows a gen-
eral agreement in their distribution, as in most cas-
es highest amounts were harvested in regions where 
high amounts of biomass are accessible. However, 
there are some discrepancies especially in the south-
western landscape units along the Pamir Highway, 
where harvesting amounts were high but available 
biomass was low according to the model. This may 
be partly explained by errors in the model, but may 
also result from clouds in the satellite images in 
those regions, which led to zero modeled biomass. 
Finally, results of the regional biomass model have 
to be interpreted carefully, as remote sensing based 
methods are limited in this environment and errors 
are relatively large (Zandler et al. 2015).

4.2	An energy poverty index adapted to the lo-
cal situation of  Alichur

Through the energy-system analysis performed, 
it becomes clear that none of the existing energy 
poverty indices initially mentioned adequately re-
flect the energetic situation of Alichur. Setting an 
energy poverty threshold based on the share of 
monetary income households spent on energy car-
riers (i.e. 10% as mentioned in Barnes et al. 2011) 
neglects the importance of local biomass like dwarf 
shrubs and kuik in the energy system investigated. 
Similarly, as no household in Alichur is connect-

ed to the electricity or the gas grid simply because 
these do not exist, access to modern energy carriers 
as suggested by IEA (2010) cannot serve as an ener-
gy poverty index in Alichur. Furthermore, the com-
posite index presented in Nussbaumer et al. (2011) 
is not able to differentiate between households in 
Alichur, as either all or none of the indicators ap-
ply to every household. This situation is compara-
ble when considering other energy poverty indices 
as well (e.g. Groh 2014) and thereby supports the 
necessity of a locally adapted energy poverty index.

During the energy system analysis, we identified 
access to the three energy carriers of kuik, dwarf 
shrubs and coal as being critical for satisfying peo-
ple’s demand for heating and cooking (Fig. 3). For 
the energy index developed, we focus on people’s 
ability to purchase energy carriers and to supply 
themselves with dwarf shrubs at minimum cost (or 
nearly free of charge). Due to the fact that kuik, in 
contrast to coal, is available all year round and can 
be purchased at considerably lower costs in compar-
ison to coal, it serves as a measure for the amount 
of energy that people are able to purchase in our 
energy index. When considering coal consumption 
besides donations by the Red Cross, commercial 
coal is currently consumed by wealthier households 
in Alichur only. These households use coal regard-
less of its higher price because of its convenience in 
comparison to kuik and dwarf shrubs. Coal there-
fore does not influence energy poverty and is not 
directly included in the energy poverty index.

We observed that, in regard to its calorific val-
ue, kuik was the cheapest energy carrier available in 
Alichur. On average the price of one ton of kuik was 
41 USD in 2012. In order to cover an energy demand 
of 161.7 GJ, 12.3 t of kuik are needed. At the given 
price this requires 504 USD (252 USD to cover 50% 
of the energy demand). In 2012, the interviewed 
households on average spend 17% of their monetary 
income on energy, though the standard deviation 
was 19% and thus rather high. It is assumed that 
no more than 36% (the average plus one standard 
deviation) of a household’s income can be spent on 
energy carriers.

In section 3.1.2 we derived kuik production 
figures of the animals kept in the Eastern Pamirs. 

Sheep Goat Cow Yak

Tezek -- -- 970 kg/a 909 kg/a

Kuik 49 kg/a 49 kg/a 970 kg/a 303 kg/a

Tab. 2: Tezek and kuik production figures of relevant livestock species
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Using the livestock numbers given in the household 
interviews, calculation of each household’s kuik-self-
supply rate is possible. Livestock ownership is therefore 
an essential category regarding a household’s energy 
situation.

Harvesting dwarf shrubs is a labor-intensive ac-
tivity. With up to 93% of the dwarf shrubs’ biomass 
located below the ground (Yusufbekov and Kasach 
1972), the act of digging out the dwarf shrubs and 
carrying dwarf shrub bundles (teng) entails substan-
tial physical labor. Therefore, workforce is a crucial 
category for biomass acquisition. Hoeck et al. (2007) 
state that in the Western Pamirs, harvesting bio-
mass is mostly performed by women and children. 
However, our findings suggest that mainly men 
between the ages of 15 to 45 are employed in this 
activity. We found that at least one man in this age 
group is needed to collect enough dwarf shrubs to 
satisfy 50% of a household’s average annual energy 
consumption. If a household’s total annual energy 
consumption should be satisfied by dwarf shrubs, at 
least two men at the specified age are needed. This 
positive influence to energy security due to increased 
participation of household members in energy re-
source supply is different to the concept presented in 

Mirza and Szirmai (2010), where increased involve-
ment of household members contributes to energy 
poverty. Again, this shows that energy poverty indi-
ces have to be adapted to the regional objective.

Households possessing at least one of the three 
factors of monetary income, livestock ownership or workforce 
in sufficient quantity and one factor in medium quantity, 
or who possess all three factors in medium quantity are 
considered energy secure (Tab. 3). These households 
dispose of enough resources to supply themselves 
with energy carriers to satisfy no less than 150% of 
their current energy demand. Through diversifica-
tion in these households’ energy consumption, ener-
gy secure households are not vulnerable and can re-
sist smaller shocks to the energy system. Households 
with only one factor at a sufficient quantity and all other 
factors at low quantities or with only two factors at 
a medium quantity are classified as endangered by energ y 
poverty. Even though these households can currently 
satisfy 100% of their entire energy demand and po-
tentially even more, they are vulnerable to shocks. 
A shortage in one of the factors, caused for instance 
by a sick household member, unemployment or high 
losses of livestock during winter, cannot be compen-
sated. Finally, households, which can currently only 
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satisfy less than 100% of their energy demand by 
themselves and are relying on external help, are clas-
sified as energ y poor. 

94 of the household interviews contained com-
plete and consistent information on the described 
factors. The situation of 56 of these households 
(60%) was classified as energ y secure. While 24 house-
holds (25%) can currently supply themselves with 
energy but are endangered by energ y poverty, 14 house-
holds (15%) are energ y poor at present, according to 
this classification. With an annual demand of 205 t 
of dwarf shrubs harvested by individual harvest and 
502 t harvested by motorized harvest and 8,343 t to 
10,080 t of dwarf shrubs accessible for individual har-
vest, resp. 63,821 t to 75,479 t accessible for motorized 
harvest, the current harvesting practices can be con-
tinued for a considerable period of time even with-
out considering regrowth. We therefore conclude 
that biomass availability is sufficient in the medium-
term and dwarf shrub supply will not cease within 
the near future. However, the spatial distribution of 
biomass and related harvesting patterns show that 
the largest quantities are located in areas at consider-
able distance to the village center or in regions that 
are difficult to access (e.g. valley slopes). The present 
harvesting situation suggests that considerable re-
sources are needed to harvest dwarf shrubs even to-

day. However, considering that the regrowth rates of 
dwarf shrubs are potentially below the current rate 
of usage, future access to dwarf shrubs may be even 
more costly in terms of workforce needed (and capi-
tal when motorized harvest is considered). According to 
our method of estimating energy poverty, increasing 
the workforce needed to gather dwarf shrubs nega-
tively affects the local household’s energy security 
situation. For instance, if the workforce required to 
supply a household with sufficient dwarf shrub bio-
mass would double in the future, only 27 households 
(29%) could consider themselves energy secure, 
while 35 households (37%) would be endangered 
by energy poverty and 32 households (34%) could 
not supply themselves with the energy they require 
(Fig. 5).

Our results demonstrate that energy poverty is 
a complex phenomenon, which depends on a num-
ber of regionally varying social, economic and natu-
ral factors. This finding is similar to the results of 
Srivastava et al. (2012), who revealed that energy 
poverty strongly varies according to local condi-
tions. As Pereira et al. (2010) point out, analysis 
of energy poverty always depends on the definition 
of a poverty line, which in turn depends on a pro-
found understanding of the utilization of energy 
resources. Our in-depth analysis of Alichur’s local 

Sufficient quantity Medium quantity Low quantity

Monetary 
income

At least 100 % of  the average 
annual energy consumption 
can be purchased by the 
annual monetary income

At least 50 % of  the average 
annual energy consumption 
can be purchased by the 
annual monetary income

Less than 50 % of  the average 
annual energy consumption 
can be purchased by the annual 
monetary income

36 % of  the annual income 
>= 504 USD

36 % of  the annual income 
>= 252 USD

36 % of  the annual income 
< 252 USD

Livestock 
ownership

The livestock owned 
produces enough kuik to 
cover at least 100% of  
the average annual energy 
consumption

The livestock owned 
produces enough kuik 
to cover at least 50% of  
the average annual energy 
consumption

The livestock owned produces 
less kuik than required to cover 
at least 50% of  the average 
annual energy consumption

kuik production >= 12.3 t kuik production >= 6.2 t Kuik production < 6.2 t

Workforce The household’s workforce 
can harvest enough dwarf  
shrubs to cover at least 100% 
of  the average annual energy 
consumption

The household’s workforce 
can harvest enough dwarf  
shrubs to cover at least 50% 
of  the average annual energy 
consumption

The household’s workforce 
cannot harvest enough dwarf  
shrubs to cover at least 50% 
of  the average annual energy 
consumption

Workforce>=2 persons Workforce=1 person No workforce

Tab. 3: Categorization of the local energy situation
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energy system suggests that, in the Eastern Pamirs 
of Tajikistan, besides monetary income and livestock 
ownership, the ability of a household to access local 
energetic resources is the main factor determining 
regional energy poverty. Other factors, which are 
only partly addressed by our energy poverty index, 
are the social structure of households and social net-
works within the community, which might also af-
fect a household’s energy supply, demand and coping 
strategies in bottleneck situations, but are difficult 
to quantify (e.g. Johnson and Brydon 2012; San et 
al. 2012; Mislimshoeva et al. 2014). Finally, regional 
disparities are significant within the Eastern Pamirs 
of Tajikistan and different energy carriers may be de-
cisive for the regional energy situation in other vil-
lages, as examples given in Kraudzun (2014) show. 

5	 Conclusion

This study is the first interdisciplinary analysis of 
an energy system located in the Eastern Pamirs based 
on extensive quantitative and qualitative surveys. 
The study shows that existing energy poverty indices 
are not adequately capable of distinguishing between 
different energetic circumstances of households 
in the Eastern Pamirs. The energy system analysis 
performed in this study demonstrates that monetary 
income, livestock ownership and workforce of households 
are fundamental to ensure energy supply in this pe-
ripheral mountain setting and are important indica-
tors for regional energy poverty. The derived energy 
poverty index for Alichur includes these aspects and 
results in a highly diversified energy situation of local 
households. This confirms Barnes et al. (2011) and 
Srivastava et al. (2012), who state that energy pov-
erty indices have to be adapted on a regional scale. 
Furthermore, as energy access and therefore energy 
poverty is determined by a number of factors, our 

results emphasize the complexity of this field and the 
importance of interdisciplinary research strategies. 
Finally, we showed that a profound characterization 
of the local energy situation in peripheral mountain 
regions is only possible with a combination of social 
and environmental data.

We suggest that presently only a small share of 
Alichur’s population is affected by severe energy 
poverty. According to our index, the majority of the 
local households may be considered energy secure or 
at least able to satisfy their current energy demand 
without external help. These new, empirically-based 
findings confirm our initial hypothesis and contra-
dict earlier studies that depict a widespread and se-
vere energy crisis in the Eastern Pamirs. However, 
our results also support the second hypothesis stat-
ing that the energetic dependency on regionally 
available dwarf shrubs in combination with increas-
ingly difficult accessibility may significantly reduce 
energy security in the future. As energy poverty is 
not only based on regional resource availability but 
also depends on demography, future access to mar-
kets (e.g. China) and the price of coal, a compre-
hensive outlook on future developments is beyond 
the scope of this study and requires additional data, 
models and research. Further studies, focusing on 
livelihood strategies, local particularities of energy 
poverty and dwarf shrub regeneration could improve 
the picture of dynamic ecological aspects, as well as 
of social and economic features of households influ-
encing consumption patterns and therefore, energy 
poverty at the micro-level.
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Abstract 

Peripheral mountain areas in developing countries are often characterized by energy poverty 
and simultaneously a high natural potential of solar energy. The Eastern Pamirs of Tajikistan are 
a prime example of this situation with lacking energetic infrastructure, remoteness, pressure on 
local natural resources and high incident radiation amounts. However, an integrative assessment 
of the feasible potential of solar photovoltaic power utilization is lacking in this region as well as 
in many other mountainous environments. Therefore, we conducted an evaluation of the natural 
potential, the feasibility and the effects of increased solar photovoltaic electricity generation. 
Methodologically, we used climatic measurements, a spatial radiation model, field and literature 
based scenarios of energy requirements, financial frame conditions and biomass data for 
respective assessments. Results showed that a high natural potential of solar radiation for 
photovoltaic applications, comparable to some of the most favorable regions, exists. Calculations 
based on the derived scenarios indicate that the generation of basic thermal energy amounts for 
hot water boiling with a photovoltaic power plant is feasible within reasonable cost limits in the 
district capital. A realization of the designed photovoltaic power plant can significantly alter the 
energetic situation of the region by alleviating energy poverty, increase carbon sequestration by 
up to 1,500 t/year and reduce uprooting of dwarf shrub stands by up to 2,000 ha/year. We 
illustrate that the presented integrative approach can be applied straightforwardly when some 
climatic measurements and field observations are available and that solar photovoltaic energy is 
an important alternative to other renewable energy resources for the sustainable development of 
peripheral high mountain communities. 

Keywords: Eastern Pamirs; Tajikistan; solar energy potential; photovoltaics; high mountain 
regions; radiation model; alternative energy resources; reduction of vegetation degradation, 
carbon emission savings 
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Introduction 

Remote mountain areas serve as illustrative examples of renewable energy potentials in 
environments characterized by abundant energy scarcity (Förster et al. 2011). Thereby, the 
Eastern Pamirs of Tajikistan, often referred to as the ‘Roof of the World’, constitute a region 
with natural and socio-economic conditions that are of special interest to assess the feasibility and 
possible effects of alternative energy sources. The population is highly dependent on locally 
available fuel, such as biomass from dwarf shrubs or animal manure, to meet their daily energy 
demand in a cold and harsh climate. This is mainly caused by a lack of energy infrastructure (as 
the remote location prevents the connection to the national energy grid), the scarcity or high 
costs of imported energy (e.g. coal) and poverty (Wiedemann et al. 2012; Kraudzun 2014; 
Kraudzun et al. 2014). The associated harvesting of dwarf shrub biomass has raised alarming 
concerns of environmental degradation (Breu et al. 2005; Breckle and Wucherer 2006; Hoeck et 
al. 2007; Wiedemann et al. 2012), whereas more recent studies indicate that the situation is not 
that severe (Kraudzun 2014; Kraudzun et al. 2014; Vanselow and Samimi 2014). However, all 
studies conclude that increased development of renewable energy resources is necessary for a 
sustainable development (Hoeck et al. 2007; Förster et al. 2011; Wiedemann et al. 2012; 
Kraudzun 2014; Kraudzun et al. 2014). This situation is of special interest against the background 
of a large anticipated natural potential of regenerative energy resources: high altitude, pronounced 
aridity and prevailing clear sky conditions lead to high solar irradiation with up to 90 % of 
extraterrestrial radiation reaching the surface under ideal conditions. The given circumstances 
related to lacking infrastructure, peripheral locality, thermal biomass utilization and pressure on 
the environment with simultaneously high natural potential of renewable energy resources are 
typical for many mountain areas worldwide, as examples from Nepal (Bhandari and Stadler 2011; 
Poudyal et al. 2012), Tibet (Wang and Qiu 2009; Limao et al. 2012), Bhutan (Gilman et al. 2009), 
Chile (Fthenakis et al. 2014)  and Greece (Katsoulakos 2011) illustrate. However, in the Eastern 
Pamirs and many other peripheral mountain regions, neither an assessment of the natural 
potential of solar energy resources nor an evaluation of feasible photovoltaic power utilization 
has been carried out. Furthermore, the environmental effects of enforced photovoltaic energy 
development in the future, e.g. a reduction in dwarf shrub clearance or an increased carbon 
sequestration (cf. Limao et al. 2012), remain unknown. Generally, existing research on renewable 
energy resources in developing regions is mostly focused on different methods to derive available 
solar radiation amounts (Huld et al. 2012), or on the economic comparison of different 
techniques for rural electrification (Mainali and Silveira 2013), or is based on the environmental 
and social effects of installed renewable energy infrastructure (Limao et al. 2012). This study aims 
to integrate different parts of research fields regarding renewable solar energy - from resource 
assessment to the possible implementation of solar energy supply - by an evaluation of the 
potential effects of a solar energy utilization scenario in a high mountain environment. 

In order to close present regional research gaps and to serve as a general methodological 
example in assessing the feasible potential of renewable energy resources in peripheral mountain 
areas, options of utilizing solar energy for electricity generation based on measured natural 
conditions and socio-economic factors should be examined. Therefore, the main objectives of 
this study are: (1) to map spatial amounts of monthly solar radiation and derive inclinations 
resulting in maximum annual incident radiation with a simple method applicable to other 
economically disadvantaged mountain regions; (2) develop realistic scenarios of solar energy 
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requirements and financial frame conditions to design a photovoltaic power plant in the region’s 
largest settlement based on available radiation amounts; and (3) examine the expected 
environmental benefits caused by the anticipated substitution of biomass with solar energy. 

Methodology 

Research area 

The Eastern Pamirs of Tajikistan are a high mountain plateau with altitudes mostly between 
3,500 m and 5,500 m, covering more than 38,000 km² with an area approximately identical to the 
extent of the rajon (district) Murghab (Figure 1). Murghab is also the name of the district’s capital 
and we will refer to the town with this geographic designation throughout this article. The climate 
is cold and arid with mean temperatures of -1 °C and an average precipitation below 100 mm in 
the valleys (Murghab annual means 1998-2012, Tajik Hydrometeorological Service 2013). Due to 
these environmental conditions, forests and trees are absent and dwarf shrubs (Krascheninnikovia 
ceratoides, Artemisia spec.) constitute the only locally available woody vegetation. Since energy 
requirements for cooking and heating are high and the local hydro power plant is unable to 
deliver sufficient energy, these dwarf shrubs are a major fuel source besides animal manure and 
imported coal (Kraudzun 2014). Therefore, intensive harvesting of dwarf shrubs takes place 
whereby the whole plant is extracted as the largest share of biomass is located within the root 
zone (Zandler et al. 2015). Economically, the region is dominated by animal husbandry, and so 
besides its importance as a thermal energy carrier, dwarf shrubs are also an essential winter forage 
source for livestock (Kraudzun 2014). This concurrent utilization and the slow regeneration of 
dwarf shrubs have led to raising concerns regarding sustainable development and increased the 
demand for renewable alternatives (Kraudzun et al. 2014). To assess the potential of solar energy, 
the town of Murghab was selected as the main study site as more than half of the Eastern Pamir’s 
population lives here (about 7000 people in 1515 households (Kreczi 2011)). The existence of a 
soviet-era hydropower plant which is intended to be modernized in the near future serves as a 
reference to compare anticipated solar energy amounts. Additionally, a local electricity grid exists 
which allows for the distribution of energy without additional costs (Kraudzun 2014). 

Assessment of solar radiation amounts 

Four automatic weather stations, erected at various locations (Figure 1) to cover main villages 
and different climatological conditions simultaneously (different altitudes, valley expositions, 
compass directions), serve as a basis for the assessment of the natural potential of solar energy. 
At these stations, the parameters global radiation, wind speed, wind direction, relative humidity 
and temperature are measured at a half hourly interval. The time period available for this study 
ranges from November 2012 until October 2013 for the Pik Pionerka station (12 months) and 
from January 2013 until December 2014 for the three other stations (24 months). It was 
necessary to use own measurements as official climate stations do not measure global radiation. A 
preliminary observation of the data revealed that - although there is prevailing wind activity in the 
research area, the potential of this renewable energy resource is considerably below solar energy 
even at favorable locations and positive synergy effects are negligible. Therefore, wind energy was 
abandoned as an energy carrier for this study. 
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Figure 1 Map of the study region, climate stations and outline of implementation area for the radiation model. 

To spatially map available monthly solar radiation amounts for the Murghab area, measured 
global radiation data and an ASTER global digital elevation model (GDEM, METI and NASA 
2009) were used to calibrate and validate a geographic information system (GIS) based solar 
radiation model from ArcGIS software (Fu and Rich 1999). This approach was chosen as existing 
studies showed good performance of comparable GIS based radiation models (Hofierka and 
Kaňuk 2009; Kumar 2012), and it is considered as an appropriate method in regions with 
strongly undulating relief (Tovar-Pescador et al. 2006; Pons and Ninyerola 2008). Other methods, 
e.g. satellite based derivation of radiation amounts, were not considered as there is reason to 
believe that they are connected to large uncertainties in mountainous terrain (Huld et al. 2012; 
Amillo et al. 2014). Furthermore, this relatively simple method was selected as it may be a feasible 
approach in other peripheral mountain regions as well, as extensive and costly measurement 
campaigns are unlikely to be conducted such regions. To assess performance of the model, the 
station with the shorter available period and minimal angle of horizon (Pik Pionerka) served as a 
reference to derive atmospheric input parameters for the model (transmissivity), whereby all 
other weather stations (Alichur, Murghab, Shaymak) were used for validation and error 
calculation. Global radiation measurements and the spatial model refer to incident radiation on a 
horizontal surface. However, to maximize the solar radiation amount that falls on a photovoltaic 
(PV) cell, solar panels have to be tilted towards the sun and so a conversion from horizontal to 
inclined radiation is necessary (Evseev and Kudish 2009). To model ideal panel inclinations, 
yearly radiation sums were modelled iteratively for different tilt angles (southern orientation) 
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using 5000 points randomly located within Murghab district and with slopes below 20 degrees 
(Figure 2) to limit the analysis to areas more suitable for potential PV plants (cf. Arán Carrión et 
al. 2008). The ideal panel inclination was determined as the angle resulting in a maximum annual 
global radiation sum. This inclination and respective 5000 random points were then used to 
construct a conversion model based on linear regression between monthly inclined radiation 
(dependent variable) and monthly horizontal radiation (independent variable). The regression 
equation was applied to calculate monthly raster maps of incoming global radiation on an ideally 
tilted surface from the validated horizontal radiation raster. The maps may be generated for the 
entire Eastern Pamirs to assess spatially resolved solar energy amounts but were restricted to the 
vicinity of Murghab (i.e. a rectangle with 20 km in each direction from the city center, Figure 1) in 
this study. They represent the natural potential of solar energy and serve as a basis for site 
selection and derivation of mean global radiation amounts. 

 

Figure 2 Locations of 5000 random points used for modeling ideal panel inclination. 

Scenarios of potential solar energy utilization 

In the research area, small scale use of solar PV systems for lighting or radio applications is 
popular (Kraudzun 2014), but larger implementations, which are able to replace thermal energy 
sources, are absent. Therefore, descriptive utilization scenarios are necessary to assess the feasible 
potential of solar energy in the research area. Descriptive scenarios are not predictions but tools 
for the scientific evaluation of possible situations and should represent plausible future 
developments (Nakićenović and Intergovernmental Panel on Climate Change 2000). Scenarios 
are frequently applied for studying the potential or perspectives of renewable energy resources 
(Lund 2007; Shrestha et al. 2007). The scenarios used in this study are based on following 
assumptions:  
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a. The financial frame condition scenario is derived from the financial plan of the 
KfW development bank planning to modernize the local hydropower plant in Murghab 
for five million Euros (AHK 2013). This budget is hypothesized as a reasonable 
investment in the regional energy infrastructure. Thus, the maximum amount of 
investments for this study was assumed as 6,646,500 US$ (5,000,000 €). The foreign 
currency translation is set to the annual average of the year 2014 (Oanda 2015). 

b. The average annual energy requirement scenario is estimated based on the 
observation of household energy consumption habits. In the context of this study, 
household energy consumption is estimated for water boiling, lighting and television, as 
existing literature shows that electric energy is used for the mentioned appliances when 
available in the Pamirs (Kraudzun 2014; Mislimshoeva et al. 2014). Water boiling is 
assessed to be a minimum of 10 l/day/household. It is assumed that a household boils 
water five times a day for tea (1.5 l each time) and 2.5 l for washing dishes. Water for 
household use is usually brought inside and so kept roughly at room temperature. For 
water boiling, we selected a 2,400 W electric kettle. The mean measured time for bringing 
one liter of 17 °C warm water to boil with the selected device is around three minutes 
(n=10). Considering natural variability of water temperatures and allowing for potentially 
increased hot water demand, we set the daily operation time to 45 min/day. As for 
lighting, it is assumed that each household has four lamps, each 9 W (for one room, 
corridor, outside in front of the house, one additional room or toilet) and the total length 
of lighting is 7 h/day. Watching television (a 14.2 W for the selected device) is assessed as 
6 h/day/household. Cooking/heating is an important component of the total energy 
consumption. However, as cooking and heating based on PV energy seems to be 
unrealistic in the research area (due to extraordinarily large energy requirements in this 
cold climate), it is not included in this study. To assess the costs that would be required to 
generate energy for heating and cooking applications as well, some preliminary rough 
estimations are carried out and included in the discussion section. 

Photovoltaic power plant design and cost assessment 

Calculation of required infrastructure and total cost is based on the annual energy requirement 
scenario and a modified approach following Chandel et al. (2014). Therefore, all formulas given 
in this section are deduced from Chandel et al. (2014) if not stated otherwise: 

The panel generation factor (PGF) is based on available radiation amounts and is a central 
variable to calculate the number of PV panels necessary to generate a desired energy amount. As 
the required energy has to be minimally provided throughout the year, the month with the lowest 
incident radiation is taken as a reference for the PV design. Five percent losses (e.g. by dust) are 
also included. 

𝑃𝑃𝑃 = 𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘ℎ
𝑑𝑑𝑑

∗ (1 − 0.05)       (1) 

Required energy amounts from the PV modules (PVreq) is calculated by multiplying the 
energy needs of the scenario times 1.3 to consider 30 % energy losses in the PV system (Chandel 
et al. 2014). Total watt peak (Wp) rating for PV modules is then derived as: 
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𝑊𝑊 𝑟𝑟𝑟𝑟𝑟𝑟 𝑘𝑘 =
𝑃𝑃𝑃𝑃𝑃
𝑃𝑃𝑃

       (2) 

Further calculations are based on PV module specifications. We selected the Solarworld 
Sunmodule Plus SW 275 mono (SolarWorld AG 2015, Table 1) for the theoretical PV power 
plant. The cost of the respective module is 331 US$ (Europe Solarshop 2015a). The number of 
required PV modules is then calculated as: 

𝑁𝑢𝑚𝑚𝑚𝑚 𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑃𝑃 𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑊𝑊 𝑟𝑟𝑟𝑟𝑟𝑟 𝑊

𝑀𝑀𝑀𝑀𝑀𝑀 𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃𝑃𝑃𝑃 𝑊(𝑃𝑃𝑃𝑃)
       (3) 

Inverters are necessary to convert the generated energy from direct current (DC) to alternating 
current (AC). The size of inverters should be approximately 30 % larger than the total wattage of 
modules (Chandel et al. 2014). Satcon Power Gate Plus 100 kW PVS-0100-240 with integrated 
maximum power point tracking was selected as the inverter model with a total cost of 28,197.89 
US$ (KingSolarman 2015). The number of required inverters is then calculated as: 

𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑃𝑃 𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑊𝑊 𝑟𝑟𝑟𝑟𝑟𝑟 𝑊

𝑀𝑀𝑀𝑀𝑀𝑀 𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃𝑃𝑃𝑃 𝑊(𝑃𝑃𝑃𝑃)
       (4) 

As solar energy amounts are not equally available throughout the day, battery based energy 
storage is necessary to allow for a constant electrical power supply. Hoppecke 26 OPzS 
solar.power 4700 / 48V batteries (Hoppecke Battery GmbH 2015) were selected as storage 
devices with a unit cost of 35,029.71 US$ (Europe Solarshop 2015b). Maximum discharge of 
batteries is set to 40 %  and a battery loss of 15 % was assumed (Chandel et al. 2014). Battery 
autonomy was set to one day and a discharge over 10 hours was expected. Required number of 
batteries is then calculated from: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐴ℎ =
𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑊

𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∗ 𝑑𝑑𝑑𝑑ℎ 𝑜𝑜 𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎 ∗ (1 − 𝑙𝑙𝑙𝑙𝑙𝑙)
       (5) 

𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐴ℎ

𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎 𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 10 ℎ𝑜𝑜𝑜𝑜 𝐴ℎ
       (6) 

To control for energy charging and unloading, additional inverters are necessary. We selected 
bidirectional Eaton Power Xpert Storage 2250 kW inverters with a unit price of approximately 
330,000 US$ as storage control devices (Eaton 2014). Number of required battery inverters is 
then derived as: 

𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑃𝑃𝑃𝑃𝑃

2250 𝑘𝑘 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤𝑤)
       (7) 

Finally, all costs for the theoretical PV plant construction are summarized. In addition to the 
material costs, installation costs of 15 % were assumed (cf. SMA 2015). 
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Assessment of maximum biomass and carbon savings 

Observations by Kreczi (2013) showed that on average 3.3 medium sized dwarf shrubs are 
needed for bringing one liter of water to boil. The mean weight of local dwarf shrubs, 234 g, is 
taken from measurements (n=243) for the local allometric model presented in Zandler et al. 
(2015). Carbon content of 18 oven-dried dwarf shrub samples was determined with Thermo 
Quest Flash EA 1112 CHN elemental analyzer at the BayCEER laboratory of the University of 
Bayreuth. These values were used to calculate maximum biomass and carbon savings by 
assuming a total substitution of potential dwarf shrub biomass usage for water heating by PV 
energy. Furthermore, for the assessment it is hypothesized that no other energy carriers for hot 
water generation are utilized. To assess maximal reduction of cleared dwarf shrub areas, a mean 
value of 2,087 kg dwarf shrub biomass per ha dwarf shrub stand was assumed according to 
predictions of the best biomass model presented in Zandler et al. (2015). 

Table 1: Technical data of the Solarworld Sunmodule Plus SW 275 mono PV panel (SolarWorld AG 2015). 

Variable Unit Value 
Maximum power (Pmax) W 275 

Max.power voltage (Vpm) V 31 
Max.power current (Ipm) A 8.94 

Open circuit voltage (VOC) V 39.4 
Short circuit current (ISC) A 9.58 
Maximum system voltage Vdc 1,000 

Temperature coefficient of Pmax %/°C -0.45 
Temperature coefficient of VOC %/°C -0.3 
Temperature coefficient of ISC %/°C 0.04 

Results 

Modeled solar radiation amounts and potential energy requirements 

Mean measured sum of horizontal solar radiation amounts of the validation stations was 
1,751 kWh/m²/year in the reference period (2013-2014). The monthly radiation model showed a 
coefficient of determination (R²) of 0.96, a root mean squared error (RMSE) of 11.76 
kWh/m²/month (relative RMSE of 8.06 %) and a bias of -5,31 kWh/m²/month. Monthly 
variation of modeling errors showed higher errors in winter than in summer with an error of 7.25 
% averaged over the whole year (Table 2). Modeling of ideal panel inclinations showed good 
performances (R² of 0.94 to 0.99) and led to an optimum tilt angle of 26° degrees south to 
maximize annual solar radiation amounts. Solar incident radiation on ideally inclined surfaces 
showed an average increase of 11.1 % compared to horizontal solar radiation amounts on the 
whole raster. Suitable areas for potential PV plants, characterized by flat terrain and minimum 
inclined radiation values of above 3 kWh/m²/day (December), are mainly located to the East of 
Murghab (Figure 3a). The selected site for this study shows a linear distance to the nearest grid 
connected houses of approximately 1,660 m and a mean slope of 3.8 degrees (Figure 3b). At the 
study site, the averaged minimum radiation on an ideally inclined surface reached 3.04 
kWh/m²/day in December and a maximum of 7.33 kWh/m²/day in July (Table 3). The 
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constructed scenario on energy demand resulted in a required daily energy amount of 2.14 
kWh/day per household which implies a total energy demand of 3,237.86 kWh/day for Murghab. 

Table 2: Modeling errors of the spatial solar radiation model. 

Month Error % Absolute error Wh/m²/day 
January 11.44 325 

February 6.39 220 
March 3.32 146 
April 5.01 278 
May 3.06 181 
June 2.16 152 
July 2.57 185 

August 13.40 814 
September 5.71 325 

October 5.53 219 
November 12.61 397 
December 15.77 411 

Yearly average 7.25 304 
 

Table 3: Mean horizontal and inclined solar radiation amounts within the area of the potential PV plant. 

Month 
Horizontal solar radiation 

kWh/m²/day 
Inclined (26° S) solar 

radiation kWh/m²/day 
January 2.54 3.64 

February 3.12 4.11 
March 4.46 5.28 
April 5.08 5.43 
May 5.90 5.82 
June 7.07 6.71 
July 7.61 7.33 

August 5.27 5.45 
September 5.37 6.11 

October 4.24 5.39 
November 2.86 4.02 
December 2.10 3.04 

Yearly average 4.63 5.19 

Photovoltaic power plant specifications and cost 

The minimum panel generation factor of 2.88 resulted in 5,309 required PV modules to meet 
the necessary Wp rating of 1,459.98 kWh . DC/AC transformation required 19 inverters. 
Furthermore, 57 batteries and two battery inverters were needed to provide continuous energy. 
This design led to a material cost of 4,949,709 US$ and a total cost of 5,692,166 US$ including 
labor expenses of 15 %. The annual variation of solar radiation resulted in 2.25 
kWh/day/household of available energy in December (minimum) and 5.44 kWh/day/household 
of available energy in July (maximum, Table 4). The general layout of the PV plant led to an 
arrangement of 13 PV modules in an array, resulting in 409 arrays in 20 rows. Considering a pitch 
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distance of two meters plus the module length, this resulted in a total PV plant area of 274 x 74 
m (Figure 3c). 

Table 4: Annual variation of anticipated energy availability of designed PV plant per household and day considering 
losses. 

Month kWh/day/household Panel generation factor 
January 2.70 3.46 

February 3.05 3.90 
March 3.91 5.02 
April 4.03 5.16 
May 4.32 5.53 
June 4.97 6.38 
July 5.44 6.97 

August 4.04 5.18 
September 4.53 5.81 

October 4.00 5.12 
November 2.98 3.82 
December 2.25 2.88 

Yearly average 3.85 4.93 
 

 

Figure 3 Modeled minimum solar radiation amounts (December) on a 26° inclined surface for a) the Murghab area, 
b) the selected region for the potential PV plant and c) a 3D illustration of the potential PV plant. 
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Potential biomass and carbon savings 

Calculation of potential savings resulted in a maximum reduction of 4,270 t of fresh dwarf 
shrub biomass per year in Murghab which corresponds to 2,046 ha dwarf shrub area when 
considering average biomass stocks. With a carbon content of 45.44%, these values result in a 
maximum decrease of carbon extraction of 1,533 t per year (219 kg per capita) due to potential 
dwarf shrub harvest in Murghab. 

Discussion 

Performance of solar radiation model 

This is the first study that assesses solar energy resources in the research area and may serve as 
a methodological example for other peripheral mountain areas. The measured solar radiation 
amounts are comparable to some of the world's most favorable areas for PV development such 
as Oman (Gastli and Charabi 2010), Spain (Arán Carrión et al. 2008; Pons and Ninyerola 2008), 
Nepal (Poudyal et al. 2012) or Tibet (Limao et al. 2012). The performance measures (coefficient 
of determination, RMSE, percentage error rate) of the spatial solar radiation model resulted in 
equal or better performance in relation to similar approaches (Tovar-Pescador et al. 2006; Pons 
and Ninyerola 2008; Kumar 2012) and analogous temporal error variations with higher relative 
errors in winter than in summer months (Pons and Ninyerola 2008). Huld et al. (2012) reported 
very good performances of satellite based methods to derive solar radiation amounts at lower 
altitudes, and this approach may be an important alternative when no ground based 
measurements are available; but the authors state higher errors in mountainous terrain in their 
study compared to our results. Therefore, the presented method is seen as a reliable and simple 
approach to derive spatial solar radiation amounts in mountainous regions. However, the 
negative bias of our model showed that solar radiation is slightly underestimated and derived 
energy amounts may therefore be regarded as a conservative estimate. The modeled increase of 
solar radiation from a horizontal to an ideally inclined surface is in the same range as the reported 
value of 10-12% in other studies (Hartley et al. 1999; Arán Carrión et al. 2008). Hence, calculated 
solar radiation values available to the solar PV panels constitute a stable foundation to derive 
potentially generated energy amounts. 

Feasibility of solar PV energy generation 

The estimated cost of approximately 5.7 million US$ for the potential PV plant is slightly 
lower than the budget of a comparable project in Murghab (AHK 2013). When transferred to 
investment cost per installed kWp, the PV plant price of 3,900 US$ per kWp is located at the 
upper range of figures compiled in Ondraczek (2014). As these costs are related to grid 
connected PV plants without energy storage, resulting costs of presented PV plant are regarded 
as financially reasonable. However, the study does not represent an economic assessment of 
different energy supply systems but shows that thermal energy can be generated from solar PV 
energy within certain limits and considering realistic cost limits. This would differ substantially if 
additional thermal energy amounts besides hot water preparation should be met with solar PV 
energy: if two hours of cooking with a 1,500 W electric stove would be included in the cost 
assessment, the necessary budget to fulfill the energy requirements would more than double to 
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nearly 14 million US$. If heating with a 2,000 W electric heating device and a daily usage of six 
hours would be included additionally, the total cost of a potential PV plant with energy storage 
would amount to a total cost of more than 45 Million US$, which would correspond to an 
eightfold budget increase compared to the presented scenario. These sums indicate that an 
implementation of energy generation for heating and cooking using PV energy is not feasible 
considering the current situation. 

The running energy project of the KfW development bank provides an opportunity to 
compare potential energy amounts generated with solar energy to potential hydro energy 
amounts. The planned hydropower plant will have an installed maximum capacity of 800 kW 
(AHK 2013). Without any losses, this would result in a daily maximum production of 19,200 
kWh, which corresponds to a budget of 6,646,500 US$. Solar PV energy, when losses and 
expenses for energy storage are not considered, would result in approximately 1.4 times higher 
generated daily energy amounts in the most favorable month (July) with the same budget. 
Furthermore, a number of limitations may have to be considered regarding hydro energy. A 
modernization of the hydro power plant may not lead to significantly increased energy amounts 
as the intake channel will not be substantially enlarged (Kraudzun 2014) and water is a limited 
resource in this arid environment. Especially in winter, when temperatures of down to -30°C to -
40°C occur, a large amount the water in the catchment of the hydro power plant is frozen and 
does not contribute to the river discharge and energy generation. Similar to comparable Asian 
high mountain regions (Wang and Qiu 2009), this shows that energy generation with solar PV 
energy is an important alternative to hydro energy in the Eastern Pamirs. 

Anticipated effects of PV energy utilization 

The access to modern energy through the presented fictitious PV plant would most likely alter 
the energy situation in the Eastern Pamirs. On the one hand, characteristics of energy poverty 
like the inconveniences related to energy supply (Mirza and Szirmai 2010), indoor pollution 
(Nussbaumer et al. 2011) or dependency on biomass (Groh 2014) may be significantly reduced. 
Especially the use of dwarf shrubs, presently the most popular fuel for instant water boiling 
(Wiedemann et al. 2012; Kraudzun et al. 2014), would be expected to decrease as electric kettles 
would replace current practices. With a maximum reduction in dwarf shrub clearance of 20.5 km² 
per year, the potential PV plant would not only lower the pressure on vegetation resources, but 
may also have positive effects on livestock breeding as dwarf shrubs play an important part for 
the regional pasture potential (Vanselow 2011). This would in turn result in increased availability 
of animal manure, the second important regional thermal energy carrier (Kraudzun 2014), and 
thus lead to an indirect improvement of the local energy situation. With a carbon savings 
potential of 219 kg per capita and year, greenhouse gas emissions could be lowered significantly. 
Although a comparison of this value to other regions is problematic due to different scales and 
environments, our results are relatively high in relation to findings by Limao et al. (2012), who 
state that 432,900 t of yearly carbon savings can be gained from a decrease in woody biomass 
clearings through solar energy implementation in Tibet, which converts to a per capita value of 
158 kg using regional population figures provided by the National bureau of statistics of China 
(2005). 
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Methodological limitations 

Only two years of climatic measurements were available to calibrate and validate the presented 
radiation model. Therefore, it is challenging to ascertain that the available data is representative of 
average climatic conditions. However, our measurements show large conformity with available 
climatic parameters from the official climate stations averaged over 15 years (Tajik 
Hydrometeorological Service 2013). Furthermore, precipitation data from the Tropical Rainfall 
Measuring Mission (TRMM 2014) which may be a proxy for cloudiness and therefore solar 
radiation, indicates that the relevant time period may be regarded as representative of the long 
term average. Therefore, we expect that measurements used for this study are largely 
representative of the long term average solar radiation. Similarly, field observations that form the 
basis of scenarios on energy requirements do not allow a comprehensive insight into energy 
consumption habits of local households. An extensive survey on the potential use of electric 
energy would be needed to enable more accurate scenario specifications. Economically, our 
feasibility assessment is based on the comparison to a regional investment project. Hence, an 
increased evaluation of economic feasibility would improve the comparability to other peripheral 
mountain regions. However, as commonly used economic indicators are also based on a number 
of assumptions and highly variable input factors (Branker et al. 2011), additional research and a 
sensitivity analysis would have been necessary, which was beyond the scope of this study. 
Besides, research on the temporal variation of discharge volumes in conjunction with the 
specifications of the planned local hydropower plant would be required to calculate monthly 
generated electricity amounts and thus allow an objective comparison of PV and hydro energy 
potentials. Finally, as both the scenarios and derived figures of dwarf shrub biomass use and 
savings are based on assumptions and subject to temporal variations, it is important to consider 
the associated uncertainties of the study. 

Conclusion 

The presented approach integrates different areas of renewable energy research to assess the 
natural potential, the feasibility and the effects of increased solar photovoltaic electricity 
generation in a peripheral mountain region. Thereby, we derived the first atlas of solar resources 
in the Eastern Pamirs of Tajikistan from field measurements. Results showed a high natural 
potential of solar energy. A good modeling performance indicates the suitability of the method in 
other mountain areas when some climatic data is available. The modeled radiation amounts 
combined with realistic scenarios based on own observations, a running energy project and 
existing research suggest that basic thermal energy can be generated with photovoltaic 
applications within reasonable cost limits. The presented calculations emphasize that the 
realization of the fictitious photovoltaic power plant would considerably change the region's 
energy situation by increasing the sustainability of local energy resource use, alleviating energy 
poverty and fostering carbon sequestration. More generally, this study showed that solar 
photovoltaic energy has great potential to improve sustainable development and livelihoods of 
remote mountain communities as similar conditions persist worldwide. Therefore, solar energy 
constitutes a suitable alternative to other regenerative energy resources in mountainous 
environments. We recommend that future studies concentrate on the assessment of the local 
potential and effects of hydro energy systems based on field measurements and on changes in 
household’s energy consumption if electric energy is increasingly available. 
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8    Synthesis 
This chapter provides an integrative discussion of findings from the individual 

manuscripts in relation to the research questions and hypotheses of the dissertation. Each 
hypothesis is repeated and respective conclusions and answers summarized. Remote sensing 
based quantification of woody biomass represents the central objective of this dissertation 
which reintroduces the first hypothesis: 

Hypothesis 1: A combination of a large set of specifically adapted satellite based 
variables together with adequate selection and modeling techniques enables spatial biomass 

prediction even under difficult arid conditions. 

The submitted thesis successfully performed woody biomass quantification in an arid 
environment using space-borne optical data (Manuscript 1). In so doing, it is the first study 
that derives spatially resolved dwarf shrub quantities in the research area and, to the 
knowledge of the author, it is also the first approach that addresses this task in a region with 
such a low rate of areal vegetation cover using satellite images. However, relatively high 
prediction errors were apparent in the presented models (RMSE ~1000 kg/ha). Therefore, 
the first research question cannot with certainty be answered in the affirmative. The stated 
uncertainties necessarily have to be considered when interpreting respective results. 
Furthermore, the findings are strictly limited to the analyzed area of interest. Yet, these 
uncertainties and errors are comparable to existing space-borne earth observation studies 
deriving plant biomass in other regions and are a common phenomenon in remote sensing 
based analysis, as various error sources exist. Among them, the low intensity of the spectral 
plant signal constitutes the greatest challenge in the analyzed area. 

Considering the first hypothesis in more detail, the presented results verify that a large set 
of predictor variables is necessary for the analysis and that specific adaptions to arid 
conditions are of central importance. Most common remote sensing variables and indices 
were not applicable for biomass prediction; nor were variables that adjust for soil brightness 
among the essential variables, which implies a result differing from prior expectations. 
Experimental indices, such as color adjusted VIs and SAV or PC derivates, represented the 
most important predictors, and these variables were complemented by measures of 
vegetation pattern (texture) and topography. This shows that the integration of soil 
information and a complex, regionally adapted variable set are required for woody biomass 
prediction under conditions of scarce areal vegetation cover. As transferability of spectral 
variables is a crucial issue and a priori information on optimal predictors is frequently 
unavailable, the selection of such suitable variable sets and associated variable weighting or 
selection procedures are key remote sensing topics; which leads to the second part of the 
hypothesis. Results confirmed that an adequate model enabling high dimensional data 
handling is necessary. Models that either penalize variables or include variable shrinking 
resulted in smaller errors and lower overfitting. Most widely used methods, such as multiple 
linear regression, performed poorly or were not successful in biomass prediction. The 
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performance of statistical models showed some overlap compared with existing research, 
especially regarding the better models, but differing results were reported for the algorithms 
with lower predictive capability in this study. An important reason for this may be that the 
application of a statistical model cannot be universally determined as it is dependent on the 
number of the predictors, the relationship of the predictors to the dependent variable, and 
the interrelation between the predictors in a given context. In summary, biomass 
quantification in the most arid regions simultaneously requires sophisticated models that are 
able to handle several variables and a large number of predictors, including various spectral 
bands. The latter result is directly related to the discussion of the second hypothesis: 

Hypothesis 2: The coverage of a broad spectral range and a high spectral resolution 
increase modeling performance. Hence, hyperspectral data is especially suitable for detecting 

woody vegetation in drylands. 

The results of this thesis provide clear indications that a broad spectral range is important 
for woody biomass prediction in drylands. Variables or indices utilizing the whole or a large 
part of the sensors’ available spectral range ranked high in the performance assessment, and 
variables that cover different spectral regions were jointly integrated in the best performing 
models (Manuscript 1). However, the results do not unequivocally indicate certain optimal 
spectral regions in the multispectral study and both showed similar performances. Important 
spectral variables comprised bands from the red to NIR regions indicative of photosynthetic 
parts, red-edge bands sensitive to chlorophyll content or vegetation state, SWIR bands 
potentially capturing senescent or woody materials, and the blue to red/red-edge domain that 
may adjust for soil color effects according to literature on the subject. Hence, both sensors 
comprise bands potentially important in detecting woody vegetation, although some spectral 
bands may be too broad to precisely reflect features of respective tissue. The absence of the 
higher spectral resolution in the SWIR may have been compensated for by the additional 
red-edge band and texture measures of the RapidEye sensor. A synergetic usage of both 
sensors slightly increased modeling performance. In addition to existing research, these 
findings strongly suggest a great potential of hyperspectral data for woody biomass analysis; 
which leads to the second part of this hypothesis (Manuscript 2).  

In this thesis, with a multitude of available spectral bands, hyperspectral data was shown 
to improve the modeling of woody biomass and decreased the relative RMSE by up to 20 
percentage points compared to multispectral sensors. Thereby, a very large number of 
spectral indices significantly correlated with dwarf shrub biomass. Though, commonly used 
band combinations that are indicative of photosynthetic materials did not show the highest 
correlations with biomass and were not among the most important variables. However, 
indices from the early SWIR or far SWIR spectral regions highly correlated with dwarf shrub 
biomass and were among the most important hyperspectral variables. Hence, this spectral 
domain may be especially suitable for woody biomass quantification in arid environments, 
since it detects green as well as non-photosynthetic materials, containing cellulose and lignin, 
and respective tissue is most distinguishable from the background using these wavelengths. 
Furthermore, the relatively narrow bands may be required to capture small absorption and 
reflection features of perennial vegetation or reference wavelengths unaffected by 
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background variations. The presented findings showed that space-borne hyperspectral 
sensors enable and improve the modeling of woody plant spectral properties in the world’s 
drylands. 

In spite of the mentioned encouraging factors regarding hyperspectral remote sensing of 
scarce woody vegetation, this thesis also clearly demonstrated the limits of hyperspectral 
data. First, space-borne hyperspectral imagery is currently in an experimental stage and 
respective research is restricted to small test regions, which also applied in this study. The 
presented results also underline the boundaries in the transferability of specific hyperspectral 
VIs. This may be owing to regional differences in soil color that may diversely influence VI-
values, and color correction may also be required for hyperspectral data analysis. Similarly to 
the first manuscript, this limited transferability emphasizes the relevance of techniques that 
are able to handle large data sets for repeated model fitting and automatically select or weigh 
variables. This becomes particularly obvious in light of the more than 12,000 unique VIs that 
are available using hyperspectral bands. Finally, although hyperspectral data considerably 
improved modeling in one region, notable errors were still present, and very low vegetation 
cover resulted in an only slightly higher performance of the hyperspectral sensor compared 
to multispectral images in parts of the research area. This indicates that below a certain 
vegetation threshold, the plant signal is increasingly affected by background effects or noise, 
and space-borne detection is very constrained regardless of the sensor. In summary, this 
thesis outlined a number of solutions and methods for the derivation of woody vegetation 
quantities in arid environments. Taking the connected uncertainties into account, the results 
of the remote sensing approach provide data on the spatial distribution of dwarf shrub 
amounts over a region covering more than 20,000 km². These outcomes enable the analysis 
of regional research issues; which leads to findings regarding the third hypothesis: 

Hypothesis 3: Despite some rather pessimistic assessments regarding dwarf shrub 
resources in existing research, there are still regions with large stocks of dwarf shrub biomass 

to meet local thermal energy demands. 

Biomass maps confirm the findings of more recent research studies on the degradation of 
dwarf shrub formations and extend the regional picture by providing empirically based 
biomass quantities. Results clearly showed a diversification in the biomass availability of 
different regions (Manuscript 1). The highest dwarf shrub amounts are present in side 
valleys and on higher elevations, the least amounts in the main valleys, at lower altitudes and 
in the north-central region. A qualitative comparison suggests depletion in areas of increased 
human utilization, with a distribution of scarcer dwarf shrub amounts near main roads (e.g. 
Pamir highway) and larger villages, especially near Murghab, in contrast to high dwarf shrub 
amounts in more remote areas and around smaller villages (e.g. Shaymak). A more 
sophisticated assessment of the regional situation was provided through an integrative 
evaluation with interdisciplinary methods in a case study village (Manuscript 3). In this 
evaluation, dwarf shrub biomass accessible to harvesters was calculated and then compared 
to actual demand. The consideration of modeling uncertainties led to the conception of a 
conservative model which subtracts the average error from the prediction to calculate 
expected minimum quantities. This resulted in relatively large dwarf shrub amounts that are 
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available to the local population with the current harvesting practices and possibilities of 
transport. Considering local figures on yearly dwarf shrub use, the model showed that woody 
biomass resources are sufficient to meet fuel demands on the medium term. Most 
households of the case study village are therefore able to meet their basic energy demands, 
and the presented results contradict studies suggesting a severe energy crisis. According to 
these empirically based results, the third hypothesis can be verified on the medium term and 
on a local scale.  

However, considering the time scale as a central factor influences this perspective 
substantially. Soviet literature and additional findings indicate a regeneration rate that is too 
slow for the recovery of dwarf shrub stocks near settlements, given the contemporary 
harvesting quantities. Cleared areas are also visible in the vicinity of the case study village. 
Hence, a depletion of dwarf shrub resources is not unlikely in the long run. Additionally, the 
distances to lucrative harvesting areas increase and accessibility is lessened. For some 
households, this may hamper or prevent the provision of a basic energy supply. At present, 
many areas with high dwarf shrub biomass amounts are only accessible by vehicle with 
reasonable effort, and the availability of affordable motor fuel is a key issue for the regional 
thermal energy supply. Finally, the presented results are restricted to the case study village 
which may not be representative of the whole region as the energy situation is highly 
diversified in general and energy demand is much higher in Murghab as it is the largest 
settlement. However, these findings provide a first assessment of the energy situation based 
on extensive empirical data, and substantially improve the state of geographical research in 
the Eastern Pamirs. Yet, the presented thesis was not only aimed at the assessment of 
current woody biomass resources, but intended to evaluate the feasibility of solar energy as a 
possible alternative with the associated fourth hypothesis: 

Hypothesis 4: An integrative approach, combining climatic measurements, GIS based 
radiation modeling, and additional survey data, enables an assessment of the feasibility and 

effects of increased solar photovoltaic energy utilization. 

This dissertation represents the first study providing field based information on regional 
solar energy resources in the Eastern Pamirs (Manuscript 4). The underlying GIS based 
radiation model achieved good results in spatially determining the natural solar energy 
potential. It thereby enabled the derivation of ideal panel inclinations and created a sound 
basis for the calculation of potentially generated energy amounts. Errors resulted in slightly 
underestimated radiation quantities, but were similar to existing studies in complex mountain 
terrain. The main uncertainties of the model originate from the restrictions of a relatively 
short time period of climatic measurements, but comparisons to other data indicate sufficient 
representativeness of the long term conditions. The calculation of financial requirements for 
the construction of a solar photovoltaic power plant in the district capital Murghab using 
various scenarios of energy demand enabled addressing to the third research question. The 
generation and storage of thermal energy for cooking and heating purposes using 
photovoltaic systems demands excessive costs and is not considered to be feasible in regard 
to the present situation. However, restricting the energy requirements to the generation of 
basic electric energy supply for lighting, entertainment devices and, more importantly, the 
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generation of hot water, resulted in a different conclusion. With a total cost of less than five 
million Euros, such a potential realization proved to lie within reasonable cost limits as this is 
the budget of a comparable, ongoing regional hydro-energy project. Field observations and 
existing social surveys indicate that the aforementioned forms of electric energy utilization 
are most likely viable. The generation of thermal energy with photovoltaic systems may 
constitute a feasible alternative to dwarf shrub use to a certain degree. In agreement with 
high mountain research results of comparable areas, this shows that solar resources are an 
important renewable energy option besides other regional energy carriers. 

The development of a photovoltaic power plant for basic electric energy supply would 
substantially alter the energy system of the region. The presented thesis performed an 
assessment of the anticipated environmental effects through the hypothesized substitution of 
dwarf shrub biomass with electric energy for hot water boiling. The potential decrease of 
cleared annual dwarf shrub stands would result in a significant increase of carbon fixation in 
the ecosystems and simultaneously, enhance pasture quality. A reduction of negative effects 
related to energy poverty, such as indoor pollution or excessive physical labor in supplying 
energy, would considerably improve the living conditions of the local population. The locally 
adapted assessment of the solar energy potential based on the integration of different fields 
of renewable energy research showed that photovoltaic systems have the realistic possibility 
to substantially contribute to sustainable development in the Eastern Pamirs of Tajikistan. 
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9    Outlook 
Pursuing a research objective inevitably leads to the emergence of new research questions, 

the recognition of limitations, and the formation of new ideas to overcome related problems. 
Several approaches were not tested in this dissertation. In addition to the image based 
analysis of woody vegetation, a sampling of field based spectra would generate further 
information on unique spectral features of shrub biomass as compared to soil or other 
plants. Respective data may enable a target oriented search on ideal spectral regions or the 
testing of alternative modeling concepts based on fractional analysis of soil, green, and 
nonphotosynthetic vegetation (Meyer and Okin 2015). Other SMA methods, presently 
problematic due to the lack of pure endmember sites in arid regions, may become more 
suitable in the near future due to new algorithms, such as endmember purification 
procedures (Ma et al. 2015). These techniques would constitute fundamentally different 
approaches and provide important references on the performance of various methods in a 
region that sets the limits of remote sensing. In addition to these concepts, the analyzed time 
period of a research approach is central to addressing certain objectives. Due to the 
complexity and limitations of arid regions, this thesis focused on the derivation of present 
biomass in a first step, and hence represents a static approach. However, temporal vegetation 
dynamics in relation to human activities are another central issue in the Eastern Pamirs. 
Future research may therefore primarily aim at the development of appropriate change 
detection algorithms based on the findings of existing remote sensing studies. In this context, 
different potential techniques are available (Lu et al. 2004; Hecheltjen et al. 2014). Since the 
Landsat sensor showed to be of use in biomass detection, within certain limits, and the 
Landsat legacy project provides decades of satellite imagery, an approach with Landsat time 
series using specifically adapted change thresholds (cf. Zhu and Woodcock 2014) may enable 
important insights on vegetation degradation and the inference of related causes. 

The presented results clearly showed that a number of variables spanning the spectrum 
from the blue to the SWIR domain are important for the derivation of woody biomass in 
arid regions. Data from recently launched and upcoming sensors, complementing these 
spectral domains with more bands, are hypothesized to significantly increase performance of 
biomass modeling in drylands. The multispectral Sentinel 2a sensor, launched on 23rd of June 
2015, will provide freely available images with a medium spatial resolution (10 m to 60 m) 
and a spectral configuration that includes several red-edge and two SWIR bands (ESA 
2015a).  This sensor incorporates the advantages of the RapidEye and Landsat sensors and 
may be especially suitable for regional vegetation modeling which will be tested in the 
research area when respective data becomes available. Such an analysis may be supplemented 
by texture attributes derived from SPOT-5 imagery with up to 2.5 m spatial resolution (ESA 
2015b) which is accessible free of charge since 2014 after an application process. Besides 
multispectral images, the thesis indicates a large potential of operational hyperspectral data. 
Data from the upcoming Hyperspectral Infrared Imager (HyspIRI, California Institute of 
Technology 2015) or the Environmental Mapping and Analysis Program (EnMAP, EnMAP 
Science Advisory Group 2015) will allow for extensive and profound analysis in this regard. 
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Especially the coupling of hyperspectral bands with topographic predictors or other 
techniques successfully applied in the presented dissertation, such as color adjustments and 
SAV variables, are considered a promising approach for increasing modeling performance. 
Therefore, research on the suitability of sensors using models that enable high dimensional 
data handling will continue to improve remote sensing applications in these challenging 
ecosystems. 

This study focused on a broad range of remote sensing techniques and variables, but 
some amplification may increase the accuracy of the approach. First, future work may 
concentrate on the main variables that proved to contribute to biomass modeling and on the 
respective correction algorithms. Increased sampling of bare soil spectral properties with 
various background colors in relation to woody biomass features would enable the 
development of new adjustment indices that are considered very advantageous in this thesis. 
Further, due to the multitude of different soil colors that may diversely affect vegetation 
indices, a preceding classification that differentiates between soil color classes and 
subsequent partitioned biomass models may enhance dwarf shrub mapping with additional 
ground truth data. Similarly, the presented approach could be connected to sophisticated 
classification results, as presented in Vanselow (2011). If such a classification is extended to 
the whole research area with additional satellite images, this might improve the 
preclassification applied in this thesis. A further option for increasing modeling performance 
is the inclusion of more accurate topographic variables, as they proved to be a central factor 
for biomass modeling. Products of the TerraSAR-X add-on for Digital Elevation 
Measurement (TanDEM-X) mission may provide topographic data with a higher spatial 
resolution (12 m) and outstanding accuracy and may be globally available at the end of 2016 
(Bräutigam et al. 2015). Apart from applied topographic variables, a direct integration of 
modeled annual solar radiation may be a better indicator of biomass quantities because it is a 
main driver of evapotranspiration, and hence of water availability, which represents a key 
limiting factor for vegetation growth in arid regions. 

The evaluation of the energy situation, by linking dwarf shrub amounts to accessibility 
and demand, was restricted to a rather local scale as regional survey data was not completely 
analyzed during the finalization of this thesis. Therefore, the assessment will be extended to 
the whole region in a next step to provide a comprehensive image of the energy conditions 
in the Eastern Pamirs. The district capital Murghab is of main interest in this context. 
Another important regional research issue is the empirical appraisal of sustainable dwarf 
shrub harvesting amounts. To address this subject, comprehensive figures on the 
regeneration of shrubs would be required. However, these plants are characterized by an 
extremely slow growth rate in this environment and sophisticated dendrochronological 
dating attempts, tested in collaboration with experts from the University of Erlangen-
Nuremberg (Dr. Jussi Grießinger), have not yet been successful. Future research may 
therefore focus on long-term observations of meticulously maintained field plots and 
enclosures (cf. Su et al. 2015) to shed light on the regrowth of dwarf shrubs under different 
conditions. 
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Finally, the integrative feasibility study of solar photovoltaics as an alternative thermal 
energy source may be complemented in various ways. A longer time period of climatic 
measurements will enhance the reliability of the model. Although the performance of the 
GIS based radiation model showed adequate results, comparative testing using other and 
more complex models may increase modeling accuracy (Ruiz-Arias et al. 2009). Shifting the 
focus to a more financial perspective with calculations of economic indicators may allow for 
a better comparison with other developing mountain regions. Measurements on river 
discharge together with technical specifications of hydro-power systems may provide data to 
directly compare different locally available energy resources. In addition, the actual as well as 
the potential electric energy demand and usage should be increasingly analyzed using a social 
scientific approach for a better adaption of basic assessment scenarios. Therefore, the 
presented study provides insights into the state of local energy resources and analyzing 
methods, but also points out various ways of adapting and improving related future research. 
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