2,302 research outputs found

    Where Can Capabilities Come From? How the Content of Network Ties Affects Capability Acquisition

    Get PDF
    While strategy researchers have devoted considerable attention to the role of firm-specific capabilities in the pursuit of competitive advantage, less attention has been directed at how firms obtain these capabilities from outside a firm's boundaries. This study analyzes how firms' network ties represent one important source of capability acquisition. Theoretically, we go beyond the traditional focus on network structure and offer a novel contingency model that specifies how differences in the content of network ties (e.g., buyer-supplier, equity, and director ties) will differentially affect the process of R&D capability acquisition. Empirically, we also seek to provide an original contribution to the capabilities literature by utilizing a stochastic frontier estimation to rigorously measure firm capabilities, and we demonstrate the value of this approach using longitudinal data on business groups in emerging economies. The supportive results of our analysis show that the effect of network ties on the acquisition of new affiliate capabilities is clearly and predictably contingent on the content of the ties.

    The impact of lake and reservoir parameterization on global streamflow simulation

    Get PDF
    Lakes and reservoirs affect the timing and magnitude of streamflow, and are therefore essential hydrological model components, especially in the context of global flood forecasting. However, the parameterization of lake and reservoir routines on a global scale is subject to considerable uncertainty due to lack of information on lake hydrographic characteristics and reservoir operating rules. In this study we estimated the effect of lakes and reservoirs on global daily streamflow simulations of a spatially-distributed LISFLOOD hydrological model. We applied state-of-the-art global sensitivity and uncertainty analyses for selected catchments to examine the effect of uncertain lake and reservoir parameterization on model performance. Streamflow observations from 390 catchments around the globe and multiple performance measures were used to assess model performance. Results indicate a considerable geographical variability in the lake and reservoir effects on the streamflow simulation. Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE) metrics improved for 65% and 38% of catchments respectively, with median skill score values of 0.16 and 0.2 while scores deteriorated for 28% and 52% of the catchments, with median values - 0.09 and -0.16, respectively. The effect of reservoirs on extreme high flows was substantial and widespread in the global domain, while the effect of lakes was spatially limited to a few catchments. As indicated by global sensitivity analysis, parameter uncertainty substantially affected uncertainty of model performance. Reservoir parameters often contributed to this uncertainty, although the effect varied widely among catchments. The effect of reservoir parameters on model performance diminished with distance downstream of reservoirs in favor of other parameters, notably groundwater-related parameters and channel Manning’s roughness coefficient. This study underscores the importance of accounting for lakes and, especially, reservoirs and using appropriate parameterization in large-scale hydrological simulations

    Structural and optical investigation of non-polar (1-100) GaN grown by the ammonothermal method

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Applied Physics 113, 203513 (2013) and may be found at https://doi.org/10.1063/1.4807581.We studied the structural and optical properties of state-of-the-art non-polar bulk GaN grown by the ammonothermal method. The investigated samples have an extremely low dislocation density (DD) of less than 5 × 104 cm−2, which results in very narrow high-resolution x-ray rocking curves. The a and c lattice parameters of these stress-free GaN samples were precisely determined by using an x-ray diffraction technique based on the modified Bond method. The obtained values are compared to the lattice parameters of free-standing GaN from different methods and sources. The observed differences are discussed in terms of free-electron concentrations, point defects, and DD. Micro Raman spectroscopy revealed a very narrow phonon linewidth and negligible built-in strain in accordance with the high-resolution x-ray diffraction data. The optical transitions were investigated by cathodoluminescence measurements. The analysis of the experimental data clearly demonstrates the excellent crystalline perfection of ammonothermal GaN material and its potential for fabrication of non-polar substrates for homoepitaxial growth of GaN based device structures

    Determining the influence and effects of manufacturing variables on sulfur dioxide cells

    Get PDF
    A survey of the Li/SO2 manufacturing community was conducted to determine where variability exists in processing. The upper and lower limits of these processing variables might, by themselves or by interacting with other variables, influence safety, performance, and reliability. A number of important variables were identified and a comprehensive design experiment is being proposed to make the proper determinations

    Time Evolution of the Radial Perturbations and Linear Stability of Solitons and Black Holes in a Generalized Skyrme Model

    Full text link
    We study the time evolution of the radial perturbation for self-gravitating soliton and black-hole solutions in a generalized Skyrme model in which a dilaton is present. The background solutions were obtained recently by some of the authors. For both the solitons and the black holes two branches of solutions exist which merge at some critical value of the corresponding parameter. The results show that, similar to the case without a scalar field, one of the branches is stable against radial perturbations and the other is unstable. The conclusions for the linear stability of the black holes in the generalized Skyrme model are also in agreement with the results from the thermodynamical stability analysis based on the turning point method.Comment: 18 pages, 12 figures; v2: typos corrected, comments adde

    Screening nuclear field fluctuations in quantum dots for indistinguishable photon generation

    Get PDF
    A semiconductor quantum dot can generate highly coherent and indistinguishable single photons. However, intrinsic semiconductor dephasing mechanisms can reduce the visibility of two-photon interference. For an electron in a quantum dot, a fundamental dephasing process is the hyperfine interaction with the nuclear spin bath. Here we directly probe the consequence of the fluctuating nuclear spins on the elastic and inelastic scattered photon spectra from a resident electron in a single dot. We find the nuclear spin fluctuations lead to detuned Raman scattered photons which are distinguishable from both the elastic and incoherent components of the resonance fluorescence. This significantly reduces two-photon interference visibility. However, we demonstrate successful screening of the nuclear spin noise which enables the generation of coherent single photons that exhibit high visibility two-photon interference.Comment: 5 pages, 4 figures + Supplementary Informatio
    • …
    corecore