17 research outputs found

    Tracking cell lineages to improve research reproducibility.

    No full text

    Rif1 Regulates the Fate of DNA Entanglements during Mitosis

    Get PDF
    Clearance of entangled DNA from the anaphase mid-region must accurately proceed in order for chromosomes to segregate with high fidelity. Loss of Taz1 (fission yeast ortholog of human TRF1/TRF2) leads to stalled telomeric replication forks that trigger telomeric entanglements; the resolution of these entanglements fails at ≤20°C. Here, we investigate these entanglements and their promotion by the conserved replication/repair protein Rif1. Rif1 plays no role in taz1Δ fork stalling. Rather, Rif1 localizes to the anaphase mid-region and regulates the resolution of persisting DNA structures. This anaphase role for Rif1 is genetically separate from the role of Rif1 in S/G2, though both roles require binding to PP1 phosphatase, implying spatially and temporally distinct Rif1-regulated phosphatase substrates. Rif1 thus acts as a double-edged sword. Although it inhibits the resolution of taz1Δ telomere entanglements, it promotes the resolution of non-telomeric ultrafine anaphase bridges at ≤20°C. We suggest a unifying model for Rif1’s seemingly diverse roles in chromosome segregation in eukaryotes

    Varicella vaccination in HIV-1-infected children after immune reconstitution

    No full text
    BACKGROUND: HIV-1-infected children have an increased risk of severe chickenpox. However, vaccination is not recommended in severely immunocompromised children. OBJECTIVE: Can the live-attenuated varicella zoster virus (VZV) Oka strain be safely and effectively given to HIV-1-infected children despite previously low CD4 T-cell counts? METHODS: VZV vaccine was administered twice to 15 VZV-seronegative HIV-1-infected children when total lymphocyte counts were greater than 700 lymphocytes/microl, and six HIV-negative VZV-seronegative siblings. Weekly clinical follow-up and sampling were performed. RESULTS: None of the children developed any clinical symptom or serious adverse reaction after immunization. Only nine (60%) of the HIV-1-infected children had VZV-specific antibodies after two immunizations, whereas 100% of the siblings seroconverted. Age at baseline was negatively correlated with the VZV IgG titre at 6 weeks after the second vaccination in HIV-1-infected children. VZV-specific antibody titres after two immunizations were at a similar level to those found after wild-type infection in non-vaccinated HIV-1-infected patients, but significantly lower than in HIV-negative siblings. Importantly, VZV-specific T-cell responses increased after vaccination and were comparable in both groups over time. Documented wild-type VZV contact in three vaccinated patients did not result in breakthrough infections. CONCLUSION: VZV vaccination of previously immunocompromised HIV-1-infected children was safe. Vaccination induced specific immune responses in some of the vaccinated HIV-1-infected children, suggesting that previously immunocompromised individuals are protected against severe forms of varicell

    LAB-1 antagonizes the Aurora B kinase in C. elegans

    No full text
    The Shugoshin/Aurora circuitry that controls the timely release of cohesins from sister chromatids in meiosis and mitosis is widely conserved among eukaryotes, although little is known about its function in organisms whose chromosomes lack a localized centromere. Here we show that Caenorhabditis elegans chromosomes rely on an alternative mechanism to protect meiotic cohesin that is shugoshin-independent and instead involves the activity of a new chromosome-associated protein named LAB-1 (Long Arm of the Bivalent). LAB-1 preserves meiotic sister chromatid cohesion by restricting the localization of the C. elegans Aurora B kinase, AIR-2, to the interface between homologs via the activity of the PP1/Glc7 phosphatase GSP-2. The localization of LAB-1 to chromosomes of dividing embryos and the suppression of mitotic-specific defects in air-2 mutant embryos with reduced LAB-1 activity support a global role of LAB-1 in antagonizing AIR-2 in both meiosis and mitosis. Although the localization of a GFP fusion and the analysis of mutants and RNAi-mediated knockdowns downplay a role for the C. elegans shugoshin protein in cohesin protection, shugoshin nevertheless helps to ensure the high fidelity of chromosome segregation at metaphase I. We propose that, in C. elegans, a LAB-1-mediated mechanism evolved to offset the challenges of providing protection against separase activity throughout a larger chromosome area

    A Prospective Five-Year Follow-up After peg-Interferon Plus Nucleotide Analogue Treatment or no Treatment in HBeAg Negative Chronic Hepatitis B Patients

    No full text
    Background: Currently available treatment options for chronic hepatitis B (CHB) are not recommended for HBeAg-negative patients with a low viral load. These patients may however benefit from treatment by achieving a functional cure, defined by HBsAg-loss and undetectable HBV DNA. This study evaluated the long-term effect of combination treatment with peg-interferon-alpha-2a (peg-IFN) and adefovir or tenofovir compared to no treatment in these patients. Methods: HBeAg-negative CHB patients with HBV-DNA levels < 20,000 IU/mL (n = 151) were previously randomised 1:1:1 for peg-IFN 180 μg/week plus either adefovir 10 mg/day or tenofovir 245 mg/day, or no treatment and treated for 48 weeks in an open-label study. In this prospective long-term follow-up study, patients were monitored yearly up to five years after end of treatment (week 308). The primary outcome was sustained HBsAg-loss and secondary outcome the dynamics of HBsAg and HBV-DNA levels over time. Results: Of the 131 followed patients, the HBsAg-status was known for 118 patients after five-year follow-up. HBsAg-loss occurred similarly (P = 0.703) in all arms: 8/43 (18.6%) peg-IFN + adefovir, 4/34 (11.7%) peg-IFN + tenofovir, and 6/41 (14.6%) among the untreated patients. The time to HBsAg-loss did not differ between groups (P = 0.641). Low baseline HBsAg levels and genotype A were independently associated with HBsAg-loss irrespective of allocation. HBsAg and HBV-DNA levels declined similarly during follow-up in all patient groups. Conclusions: This prospective randomised controlled study showed that HBsAg-loss overtime was not influenced by treatment with a combination of nucleotide analogue and Peg-IFN. Low baseline HBsAg levels can predict HBsAg-loss irrespective of treatment allocation

    Dynamics of the Immune Response in Acute Hepatitis B Infection

    No full text
    Background. Acute hepatitis B virus infection in adults is generally self-limiting but may lead to chronicity in a minority of patients. Methods. We included 9 patients with acute hepatitis B virus (HBV) infection and collected longitudinal follow-up samples. Natural killer (NK) cell characteristics were analyzed by flowcytometry. HBV-specific T-cell function was analyzed by in vitro stimulation with HBV peptide pools and intracellular cytokine staining. Results. Median baseline HBV DNA load was 5.12 log IU/mL, and median ALT was 2652 U/mL. Of 9 patients, 8 cleared HBsAg within 6 months whereas 1 patient became chronically infected. Early time points after infection showed increased CD56(bright) NK cells and an increased proportion of cells expressing activation markers. Most of these had normalized at week 24, while the proportion of TRAIL-positive CD56(bright) NK cells remained high in the chronically infected patient. In patients who cleared HBV, functional HBV-specific CD8+ and CD4+ responses could be observed, whereas in the patient who developed chronic infection, only low HBV-specific T-cell responses were observed. Conclusions. NK cells are activated early in the course of acute HBV infection. Broad and multispecific T-cell responses are observed in patients who clear acute HBV infection, but not in a patient who became chronically infecte
    corecore