3 research outputs found

    Insidious pathogen-mimicking properties of nanoparticles in triggering the lectin pathway of the complement system

    Get PDF
    The lectin pathway of the complement system is an integral component of the innate immune system recognizing pathogens through patterns of sugar moieties displayed on their surfaces and neutralizing them through an antibody-independent reaction cascade. Many engineered nanoparticles incite complement through the lectin pathway, but these nanoparticles inherently do not express surface-exposed sugars. However, the projected polymeric surface architecture of nanoparticles may transiently resemble structural motifs of peptidoglycan constituents of pathogens and trigger the lectin pathway. We discuss these issues in relation to nanomedicine design and immune safety

    Particulate Systems for Targeting of Macrophages: Basic and Therapeutic Concepts

    No full text
    Particulate systems in the form of liposomes, polymeric micelles, polymeric nano- and microparticles, and many others offer a rational approach for selective delivery of therapeutic agents to the macrophage from different physiological portals of entry. Particulate targeting of macrophages and intracellular drug release processes can be optimized through modifications of the drug carrier physicochemical properties, which include hydrodynamic size, shape, composition and surface characteristics. Through such modifications together with understanding of macrophage cell biology, targeting may be aimed at a particular subset of macrophages. Advances in basic and therapeutic concepts of particulate targeting of macrophages and related nanotechnology approaches for immune cell modifications are discussed
    corecore